Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331140PMC
http://dx.doi.org/10.1093/plphys/kiab204DOI Listing

Publication Analysis

Top Keywords

root hair
32
lotus japonicus
12
cellulose synthase-like
12
root
10
intragenic complementation
8
hair
8
root nodule
8
nodule symbiosis
8
hair development
8
cellulose
5

Similar Publications

Objective: To explore the value of microflow patterns based on superb microvascular imaging (SMI) combined with greyscale ultrasound in thyroid nodule diagnosis and biopsy recommendation.

Materials And Methods: Adult patients with thyroid nodules were recruited from May 2023 to February 2024. The greyscale features of nodules were evaluated according to the five ultrasound risk stratification systems (RSSs).

View Article and Find Full Text PDF

Nitrate (NO), besides serving as a major N source, also acts as a signalling molecule in plant growth and development. Studies on NO dependent regulation of root growth in wheat (Triticum aestivum) are mostly limited to morphophysiological changes, while the underlying signalling mechanisms remain largely unexplored. To bridge this gap, the present study aims to get a mechanistic understanding of the NO dependent regulation of root growth in wheat seedlings.

View Article and Find Full Text PDF

The small nucleolar RNA NON-CODING RNA 1 negatively regulates drought tolerance in Arabidopsis thaliana.

Plant J

August 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China.

Small nucleolar RNAs (snoRNAs) function in ribosome biogenesis, and many ribosome biogenesis-related genes were downregulated by osmotic stress, implying a negative role of snoRNAs in drought tolerance. A snoRNA, namely, the NON-CODING RNA 1 (NCR1) was studied for its roles in drought tolerance in Arabidopsis. In comparison with wild-type (WT) plants, the loss-of-function ncr1 mutant plants showed enhanced drought tolerance, which was restored in the NCR1-complemented plants, whereas the NCR1-overexpressing plants revealed a drought-sensitive phenotype.

View Article and Find Full Text PDF

A Lipopolysaccharide Lipid A Acyltransferase Gene Is Involved in Soybean Rhizobial Intracellular Colonization and Symbiotic Nitrogen Fixation.

Mol Plant Microbe Interact

August 2025

Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, No.1 Shizishan Street, Hongshan District, Wuhan, Wuhan, Hubei , China, 430070;

Three major components of lipopolysaccharide (LPS) in rhizobia, namely core polysaccharide, o-antigen, and lipid A, act as microbe-associated molecular patterns (MAMPs) to participate in the symbiosis between rhizobia and legume. Rhizobia have a different lipid A structure from other Gram-negative bacteria. The 3-hydroxy group on the 2' or 3' myristate acyl chain of its lipid A is substituted by a unique very long chain fatty acid (VLCFA).

View Article and Find Full Text PDF

SIAMESE (SIM) and CELL CYCLE SWITCH 52 A1 (CCS52A1) control Arabidopsis root hair cell volume by controlling endoreplication.

View Article and Find Full Text PDF