98%
921
2 minutes
20
Merging the properties of VO and van der Waals (vdW) materials has given rise to novel tunable photonic devices. Despite recent studies on the effect of the phase change of VO on tuning near-field optical response of phonon polaritons in the infrared range, active tuning of optical phonons (OPhs) using far-field techniques has been scarce. Here, we investigate the tunability of OPhs of α-MoO in a multilayer structure with VO. Our experiments show the frequency and intensity tuning of 2 cm and 11% for OPhs in the [100] direction and 2 cm and 28% for OPhs in the [010] crystal direction of α-MoO. Using the effective medium theory and dielectric models of each layer, we verify these findings with simulations. We then use loss tangent analysis and remove the effect of the substrate to understand the origin of these spectral characteristics. We expect that these findings will assist in intelligently designing tunable photonic devices for infrared applications, such as tunable camouflage and radiative cooling devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c12320 | DOI Listing |
Dalton Trans
September 2025
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland.
Inorganic halide perovskites have been the subject of intensive research for their unique properties. Most current research focuses on halide ion exchange to modify the luminescence band gap and optical features. They are obtained mainly in colloids or thin layers, resulting in small grains with a narrow distribution.
View Article and Find Full Text PDFNano Lett
September 2025
Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.
The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Electronic address:
Background: The development of specific fluorescent probes for cancer cell discrimination holds significant promise for advancing cancer diagnostics. Conventionally, these probes operate by translating differences in biomarkers or microenvironmental factors into variations in whole-cell fluorescence intensity. However, this dominant, intensity-based strategy is highly susceptible to extraneous fluctuations arising from probe concentration, illumination instability and complex intracellular environment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Structurally colored colloids, or photonic pigments, offer a sustainable alternative to conventional dyes, yet existing systems are constrained by limited morphologies and complex synthesis. In particular, achieving angle-independent color typically relies on disordered inverse architectures formed from synthetically demanding bottlebrush block copolymers (BCPs), hindering scalability and functional diversity. Here, we report a conceptually distinct strategy to assemble three-dimensional inverse photonic glass microparticles using amphiphilic linear BCPs (poly(styrene-block-4-vinylpyridine), PS-b-P4VP) via an emulsion-templated process.
View Article and Find Full Text PDFAdv Mater
September 2025
Soft Matter Optics Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.
Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.
View Article and Find Full Text PDF