Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The liver, as the main metabolic organ, plays a key role in many vital processes, including nutrient metabolism, fat digestion, blood protein synthesis, and endocrine management. As one of the immune organs, it has a remarkable ability to adequately activate the immune cells in response to metabolic signals. The anatomy of the liver ensures its close interaction with the gut so that nutrients and gut microbiota contribute to normal metabolism. In chickens, the intestinal microbiota plays an important role in supporting health and improving production parameters. The most effective method of stimulating the microbiota is to administer an appropriate bioactive compound during embryonic development. In ovo stimulation on d 12 of egg incubation involves the delivery of the substance into the air chamber. The aim of the study was to analyze the changes at the protein level after in ovo administration of the synbiotic on d 12 of egg incubation. Our study is the first to conduct a proteome analysis in liver after the administration of a Lactobacillus synbiotic in ovo. Eggs of broiler chickens were injected with a synbiotic-Lactobacillus plantarum with raffinose family oligosaccharides (RFO). On d 21 posthatching liver was collected. We performed analyses based on two-dimensional electrophoresis, matrix-assisted laser desorption/ionization (MALDI) time-of-flight, and MALDI Fourier-transform ion cyclotron resonance to obtain a global view of the hepatic proteome changes in response to in ovo injection. A representative pattern of significantly altered liver proteins was observed after stimulation with the synbiotic. A total of 16 protein spots were differentially expressed, with 5 downregulated and 11 upregulated spots. We conclude that the in ovo synbiotic treatment had the potential to accelerate the major energy-yielding metabolic pathways in the liver of adult broilers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531852PMC
http://dx.doi.org/10.1016/j.psj.2021.101449DOI Listing

Publication Analysis

Top Keywords

proteome changes
8
ovo stimulation
8
lactobacillus synbiotic
8
egg incubation
8
liver
7
ovo
6
synbiotic
5
changes ovo
4
stimulation lactobacillus
4
synbiotic chicken
4

Similar Publications

Ageing is one of the most significant risk factors for heart disease; however, it is still not clear how the human heart changes with age. Taking advantage of a unique set of pre-mortem, cryopreserved, non-diseased human hearts, we performed omics analyses (transcriptomics, proteomics, metabolomics, and lipidomics), coupled with biologically informed computational modelling in younger (≤ 25 years old) and older hearts (≥ 50 years old) to describe the molecular landscape of human cardiac ageing. In older hearts, we observed a downregulation of proteins involved in calcium signalling and the contractile apparatus.

View Article and Find Full Text PDF

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF

Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.

View Article and Find Full Text PDF

Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.

View Article and Find Full Text PDF

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

Proteomics

September 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.

View Article and Find Full Text PDF