98%
921
2 minutes
20
A novel, to the best of our knowledge, mid-infrared chalcogenide (ChG) on magnesium fluoride () waveguide gas sensor was fabricated by using the lift-off method. was used as a lower cladding layer to increase the external confinement factor for enhancing light-gas interaction. Wavelength modulation spectroscopy (WMS) was used in carbon dioxide () detection at the wavelength of 4319 nm (2315.2). The limit of detection for the 1-cm-long sensing waveguide based on WMS is ∼0.3, which is >8 times lower than the same sensor using direct absorption spectroscopy (DAS). The combination of WMS with the waveguide gas sensor provides a new measurement scheme for the performance improvement of on-chip gas detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.440361 | DOI Listing |
Lab Chip
September 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Photonic crystal slow light waveguides present a breakthrough in the manipulation of optical signals and enhancing the interaction between light and matter. In particular, two-dimensional (2D) photonic crystal waveguides (PCWs) on silicon photonic chips hold promise in improving the sensitivity of on-chip gas sensors. However, the development of the gas sensors based on 2D PCWs suffers from a high propagation loss and a narrow slow light bandwidth.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
College of Marine Science, University of South Florida, St. Petersburg, USA. Electronic address:
Background: Total alkalinity (A) is a fundamental parameter in understanding the oceanic cycling of carbon dioxide (CO). Measurements of the A of natural waters are typically obtained through single- or multi-step titrations using a strong acid, with the endpoint pH determined via potentiometry or spectrophotometry. Conventional A determinations are labor-intensive and require precise knowledge of the sample's weight or volume.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy.
This study explores the potential of Bloch surface waves (BSWs) at the interface of a finite one-dimensional photonic crystal (1D-PC) and vacuum, exploiting spectroscopic ellipsometry in a range that encompasses the mid-infrared (4000 cm to 200 cm). BSWs can be excited in both σ and π polarizations, which in the ellipsometric configuration can be detected at the same time, presenting distinct advantages for sensor applications targeting the growth of thin solid films and molecular monolayers, surface-adsorbed gas molecules, and liquid droplets. Compared to other sensing techniques exploiting mid-infrared vibrational absorption lines for chemical-specific sensitivity, like waveguides, nano-antenna arrays, metasurfaces, attenuated total reflectance (ATR) in crystals or in optical fibers, the present approach features high field enhancements, strong field confinement, and large quality factors of the resonances, all while relying on a rather simple and potentially low-cost configuration.
View Article and Find Full Text PDFSci Rep
August 2025
Institute of Applied Physics "Nello Carrara", National Research Council of Italy (CNR), Sesto Fiorentino, 50019, Italy.
Monitoring of CO is crucial because of its profound impact on both environmental and human health. A novel highly sensitive refractive index (RI) sensor, utilizing a double-slot microring resonating structure, has been designed and numerically assessed for the sensitive detection of gas media. The structure consisted of a circular microring resonator nested in a racetrack resonating configuration mimicking the structure of an eye-shaped microring resonator (ESMRR).
View Article and Find Full Text PDFSensors (Basel)
August 2025
School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
The development of compact, CMOS-compatible gas sensors is critical for advancing real-time environmental monitoring and industrial diagnostics. In this study, we present a detailed numerical investigation of integrated photonic waveguide designs-such as ridge and slot-optimized for overtone-based gas spectroscopy in the near-infrared range. By evaluating both the evanescent-field confinement and curvature-induced losses across multiple silicon-on-insulator platforms, we identify optimal geometries that maximize light-analyte interactions while minimizing bending attenuation.
View Article and Find Full Text PDF