98%
921
2 minutes
20
The analysis and processing of ECG signals are a key approach in the diagnosis of cardiovascular diseases. The main field of work in this area is classification, which is increasingly supported by machine learning-based algorithms. In this work, a deep neural network was developed for the automatic classification of primary ECG signals. The research was carried out on the data contained in a PTB-XL database. Three neural network architectures were proposed: the first based on the convolutional network, the second on SincNet, and the third on the convolutional network, but with additional entropy-based features. The dataset was divided into training, validation, and test sets in proportions of 70%, 15%, and 15%, respectively. The studies were conducted for 2, 5, and 20 classes of disease entities. The convolutional network with entropy features obtained the best classification result. The convolutional network without entropy-based features obtained a slightly less successful result, but had the highest computational efficiency, due to the significantly lower number of neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469424 | PMC |
http://dx.doi.org/10.3390/e23091121 | DOI Listing |
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Med Eng Phys
October 2025
College of Basic Medical Science, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Biomedical Device Technology, Istanbul Aydın University, Istanbul, 34093, Istanbul, Turkey. Electronic address:
Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
September 2025
From the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America (J.S.S., B.M., S.H., A.H., J.S.), and Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (H.S.).
Background And Purpose: The choroid of the eye is a rare site for metastatic tumor spread, and as small lesions on the periphery of brain MRI studies, these choroidal metastases are often missed. To improve their detection, we aimed to use artificial intelligence to distinguish between brain MRI scans containing normal orbits and choroidal metastases.
Materials And Methods: We present a novel hierarchical deep learning framework for sequential cropping and classification on brain MRI images to detect choroidal metastases.