Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photon upconversion taking place in small rare-earth-doped nanoparticles has been recently observed to be thermally modulated in an anomalous manner, showing thermal enhancement of the emission intensity. This effect was proved to be linked to the role of adsorbed water molecules as surface quenchers. The surface capping of the particles has a direct influence on the thermal dynamics of water adsorption and desorption, and therefore on the optical properties. Here, we show that the upconversion intensity of small-size (<25 nm) nanoparticles co-doped with Yb and Er ions, and functionalized with different capping molecules, presents clear irreversibility patterns upon thermal cycling that strongly depend on the chemical nature of the nanoparticle surface. By performing temperature-controlled luminescence measurements we observed the formation of a thermal hysteresis loop, resembling an optical switching phenomenon, whose shape and trajectory depend on the hydrophilicity of the surface. Additionally, an intensity overshoot takes place immediately after turning off the heating source, affecting each radiative transition differently. We performed numerical modelling to understand this effect considering non-radiative energy transfer from the surface defect states to the Er ions. These findings are relevant for the comprehension of nanoparticle-based luminescence and the interplay between the surface and volume effects, and more generally, for applications involving UCNPs such as nanothermometry and bioimaging, and the development of optical encoding systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr03223bDOI Listing

Publication Analysis

Top Keywords

controlling thermal
4
thermal switching
4
switching upconverting
4
upconverting nanoparticles
4
nanoparticles surface
4
surface chemistry
4
chemistry photon
4
photon upconversion
4
upconversion place
4
place small
4

Similar Publications

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF

Design, synthesis and antitumor activity of pentacyclic triterpenoid Asiatic acid derivatives as Sp1 inhibitors.

Bioorg Med Chem Lett

September 2025

Department of Chemical Engineering, Analysis and Test Center, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:

Asiatic acid (AA) was used as the lead compound and 22 inhibitors of specificity protein 1 (Sp1) were designed and synthesized with modification at A ring and C-28 position of AA, whose structures were confirmed by HRMS, H NMR and C NMR. The growth inhibitory effects of Asiatic acid derivatives on human breast cancer cells (MCF-7) and cervical cancer cells (Hela) were determined by tetramethyl azole salt (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) colorimetric assay. The results showed that all of these compounds inhibited the proliferation of HeLa and MCF-7 cells, and all the derivatives showed stronger tumor cytotoxicity than AA, among which compounds I, II, and III were comparable to the positive control drug cisplatin.

View Article and Find Full Text PDF

Texture and flavor switchable emulsion gels for replaced fat with improved mouthfeel and aromatic characteristics.

Food Chem

September 2025

School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Plant-based fat replacers have attracted considerable interest owing to their contributions to environmental sustainability, animal welfare, and health benefits. Their textural properties and flavor release behavior during processing are key determinants of their quality. Herein, a dual-network gel was produced using gellan gum and curdlan, which are thermally reversible and irreversible gel samples, respectively.

View Article and Find Full Text PDF

Meat protein microgels assembled under various temperature-concentration conditions: Underlying its interfacial behavior.

Food Chem

September 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

At moderate protein concentrations (10, 20 mg/mL) and a high temperature (80 °C), meat protein (MP) self-assembled into weak gels and then intriguingly collapsed into microgels through continuous heating and annealing cooling, resulting in a sol state with exposed hydrophobic groups and disulfide bonds. The different prepared microgel groups were labeled as MP and MP, respectively. Compared with the control group (Con: 7.

View Article and Find Full Text PDF

Background: Erythema, an early visual indicator of tissue damage preceding pressure injuries (PrIs), presents as redness in light skin tones but is harder to detect in dark skin tones. While thermography shows promise for early PrI detection, validation across different skin tones remains limited. Furthermore, most protocols and models have been developed under highly controlled conditions.

View Article and Find Full Text PDF