98%
921
2 minutes
20
The wheat leaf rust fungus, Puccinia triticina Erikss., is a worldwide pathogen of tetraploid durum and hexaploid wheat. Many races of P. triticina differ for virulence to specific leaf rust resistance genes and are found in most wheat-growing regions of the world. Wheat cultivars with effective leaf rust resistance exert selection pressure on P. triticina populations for virulent race types. The objectives of this study were to examine whole-genome sequence data of 121 P. triticina isolates and to gain insight into race evolution. The collection included isolates comprising of many different race phenotypes collected worldwide from common and durum wheat. One isolate from wild wheat relative Aegilops speltoides and two from Ae. cylindrica were also included for comparison. Based on 121,907 informative variants identified relative to the reference Race 1-1 genome, isolates were clustered into 11 major lineages with 100% bootstrap support. The isolates were also grouped based on variation in 1311 predicted secreted protein genes. In gene-coding regions, all groups had high ratios of nonsynonymous to synonymous mutations and nonsense to readthrough mutations. Grouping of isolates based on two main variation principle components for either genome-wide variation or variation just within the secreted protein genes, indicated similar groupings. Variants were distributed across the entire genome, not just within the secreted protein genes. Our results suggest that recurrent mutation and selection play a major role in differentiation within the clonal lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496273 | PMC |
http://dx.doi.org/10.1093/g3journal/jkab219 | DOI Listing |
Fungal Biol
October 2025
Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino La Carrindanga Km 7, Bahía Blanca, 8000, Argentina.
Tritrophic interactions involving host plants, fungal pathogens and mycoparasites play an important role in the dynamics of natural ecosystems. In this work, we investigate the impact of the rust fungus Puccinia araujiae on the growth of Araujia hortorum plants in the presence/absence of a mycoparasitic Cladosporium species identified here as Cladosporium sphaerospermum, supported by both morphological and molecular studies. The capacity of the latter to grow and reproduce at the expense of teliospores of the rust was confirmed through microscopic observations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Life Science Academy, Beijing, 102206, China.
In-field molecular diagnostics of plant pathogens are critical for crop disease management and precision agriculture, but tools are still lacking. Herein, we present a bioluminescent molecular diagnostic assay capable of detecting viable pathogens directly in minimally processed plant samples, enabling rapid and precise in-field crop disease diagnosis. The assay, called bioluminescent craspase diagnostics (BioCrastics), leverages newly discovered RNA-activated protease of CRISPR (Craspase) with enzymatic luminescence to generate a cascaded amplification, thus bypasses nucleic acid purification and amplification while achieving sub-nanogram sensitivity for fungal pathogens.
View Article and Find Full Text PDFBreed Sci
April 2025
Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Fukuyama, Hiroshima 721-8514, Japan.
Strong yellow color, caused by carotenoid accumulation, in semolina flour made from durum wheat ( L. subsp. (Desf.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Key Laboratory of Oasis Town and Mountain-basin System Ecology, Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, College of life Sciences, Shihezi University, Shihezi 832003, China.
The rust disease caused by seriously affects the growth of However, the defense mechanisms against rust infection remain unclear. This study explored the regulatory mechanisms of in response to rust disease through combined physiological, biochemical, and transcriptomic analyses. The results showed that with the increase in disease severity, the chlorophyll content of leaves decreased significantly, while the antioxidant and phenylalanine ammonia lyase activities progressively increased.
View Article and Find Full Text PDFMicroorganisms
August 2025
College of Tropical Crops, Yunnan Agricultural University, Pu'er 665001, China.
The plant microbiome plays a role in pathogen defense, but its role in different resistant varieties and ecological niches remains unclear. This study used 16S rRNA and ITS sequencing to investigate microbial communities and interactions in disease-resistant (PT) and susceptible (Bourbon) coffee varieties of five ecological niches: leaves, fruits, roots, rhizosphere soil, and non-rhizosphere soil. We found that the microbial communities differed significantly between the two varieties.
View Article and Find Full Text PDF