98%
921
2 minutes
20
Transition metal dichalcogenides (TMDs), transition metal carbides (TMCs), and transition metal oxides (TMOs) have been widely investigated for electrocatalytic applications owing to their abundant active sites, high stability, good conductivity, and various other fascinating properties. Therefore, the synthesis of composites of TMDs, TMCs, and TMOs is a new avenue for the preparation of efficient electrocatalysts. Herein, we propose a novel low-cost and facile method to prepare TMD-TMC-TMO nano-hollow spheres (WS-WC-WO NH) as an efficient catalyst for the hydrogen evolution reaction (HER). The crystallinity, morphology, chemical bonding, and composition of the composite material were comprehensively investigated using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The results confirmed the successful synthesis of the WS-WC-WO NH spheres. Interestingly, the presence of nitrogen significantly enhanced the electrical conductivity of the hybrid material, facilitating electron transfer during the catalytic process. As a result, the WS-WC-WO NH hybrid exhibited better HER performance than the pure WS nanoflowers, which can be attributed to the synergistic effect of the W-S, W-C, and W-O bonding in the composite. Remarkably, the Tafel slope of the WS-WC-WO NH spheres was 59 mV dec, which is significantly lower than that of the pure WS NFs (82 mV dec). The results also confirmed the unprecedented stability and superior electrocatalytic performance of the WS-WC-WO NH spheres toward the HER, which opens new avenues for the preparation of low-cost and highly effective materials for energy conversion and storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452812 | PMC |
http://dx.doi.org/10.1186/s40580-021-00278-3 | DOI Listing |
ACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDFJ Org Chem
September 2025
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
The denitrogenation of tetrazoles is typically performed using transition-metal catalysts at high temperatures due to the inherent stability of the tetrazole group. In this work, we present, for the first time, an electrochemical method for denitrogenating tetrazoles at room temperature. This method employs a sacrificial zinc anode and a platinum cathode in a solvent mixture of acetonitrile and water under a constant current in an undivided cell.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
We demonstrate a direct synthesis of coumarin-3 derivatives from aryl alkynoates and hydrazines in visible light, photocatalyzed by rose bengal. The method is facile, transition-metal-free, versatile, and furnishes various 3-functionalized coumarins such as ester, acyl, aryl, carbamoyl, and sulfonyl in moderate to good yields, with the respective hydrazine reagent serving as the radical precursor. Two anti-TB molecules, and , were synthesized using this method.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics and Astronomy, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States.
Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.
View Article and Find Full Text PDF