Dynamics of repeat-associated plasticity in the aaap gene family in Anaplasma marginale.

Gene

Program in Genomics, Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164-7040, USA; School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752, USA; Paul G. Allen School for Global Animal Health, Washington

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anaplasmosis, the most prevalent tick-transmitted disease of cattle, is caused by the rickettsial intracellular parasite Anaplasma marginale. The pathogen replicates within a parasitophorous vacuole formed from the invagination of the erythrocyte membrane. Several strains of A. marginale form "tails" or "appendages" which are attached to, and extend out from, the cytoplasmic side of the parasitophorous vacuole. Genomic analysis of the parasite antigen distributed along the appendage led to the discovery of the aaap (Anaplasma appendage associated protein) gene family located within a highly plastic region in the genome. The aaap gene family consists of aaap and several alps (for aaap-like proteins), depending on the strain. These genes/proteins are characterized by repeat sequences. To investigate locus plasticity, different versions of the locus were cloned from the same strain as well as from different strains, sequenced and aligned to identify changes. Our findings show that repeat sequences both within and between genes facilitated rearrangement events within the locus. Structural variation of the locus in the St. Maries strain was further investigated during infection of different cellular environments, i.e., bovine erythrocytes and tick cells, with a reduction in subpopulations of the aaap locus within the tick as compared to erythrocytes. Interestingly, subpopulations bearing alternative locus structures began to arise again when the pathogen was transferred from the tick environment into a naïve calf. Additionally, the Aaap protein expression profile between blood and tick samples showed a regulatory shift, indicating a host-specific response. Alignment of the protein sequences from different species of Anaplasma reveals six similar repeating motifs that appear to be unique to a few species of Anaplasma. The role the aaap locus may play in the pathogenesis of the bovine host or in tick infection/transmission remains unknown; however, the changes in aaap locus subpopulations, locus structure, and protein expression indicate that these genes have a role in strain diversification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.100010DOI Listing

Publication Analysis

Top Keywords

gene family
12
aaap locus
12
locus
9
aaap
8
aaap gene
8
anaplasma marginale
8
parasitophorous vacuole
8
repeat sequences
8
protein expression
8
species anaplasma
8

Similar Publications

Major depressive disorder is a prevalent and debilitating psychiatric illness that produces significant disability. Clinical data suggest that the pathophysiology of depression is due, in part, to a dysregulation of inflammation and glutamate levels in the brain. The systemic administration of lipopolysaccharide (LPS) has been shown to induce depressive-like behaviors in mice.

View Article and Find Full Text PDF

PATJ deficiency leads to cystic kidney disease and related ciliopathies.

HGG Adv

September 2025

Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany. Electronic address:

Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene still remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-Associated Tight Junction Protein (PATJ; also known as Inactivation-No-Afterpotential D-Like, INADL) in an individual with ciliopathy.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Spinturnix psi (Dermanyssoidea, Spinturnicidae): gene content, composition, rearrangement and phylogenetic implications.

Exp Appl Acarol

September 2025

Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.

The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF