98%
921
2 minutes
20
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426561 | PMC |
http://dx.doi.org/10.1016/j.pacs.2021.100297 | DOI Listing |
J Neurosci
September 2025
Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada, H4B 1R6
Adaptive behavior depends on a dynamic balance between acquisition and extinction memories. Male and female rodents differ in extinction learning rates, suggestion potential sex-based differences in this balance. In males, deletion of extinction-recruited neurons in the central nucleus (CN) of the amygdala impairs extinction retrieval, shifting behavior toward acquisition (Lay et al.
View Article and Find Full Text PDFNeurosci Bull
September 2025
Laboratory Animal Center, Fudan University, Shanghai, 200032, China.
Nr4a2 (Nurr1) is well known to be vital for midbrain dopaminergic neurons. Recent single-cell RNA analyses reveal that Nr4a2 is expressed in lateral cerebral regions, within neurons named L4/L5/L6 IT Car3. These neurons have attracted intense attention for the molecular mechanisms underlying their development and functions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224.
Learning when to initiate or withhold actions is essential for survival, requiring the integration of past experiences with new information to adapt to changing environments. The prelimbic cortex (PL) plays a central role in this process, with a stable PL neuronal population (ensemble) recruited during operant reward learning to encode response execution. However, it is unknown how this established reward-learning ensemble adapts to changing reward contingencies, such as reward omission during extinction.
View Article and Find Full Text PDFCell Rep
September 2025
Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:
An adverse gestational environment is a risk factor for the development of psychiatric disorders. Although studies have implicated modifications in neuronal DNA and chromatin, how these changes come about and lead to abnormal behaviors is not known. We sought to identify persistent DNA/chromatin and transcriptomic signatures induced by a proinflammatory gestational environment in the ventral dentate gyrus (vDG), a hippocampal region linked to anxiety.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight In
The dorsal striatum plays a critical role in action selection, movement, and sensorimotor learning. While action-specific striatal ensembles have been described, the mechanisms underlying their formation and evolution during motor learning remain poorly understood. Here, we employed longitudinal two-photon Ca imaging of dorsal striatal neurons in head-fixed mice as they learned to self-initiate locomotion.
View Article and Find Full Text PDF