98%
921
2 minutes
20
The recent development of liquid jet and liquid leaf sample delivery systems allows for accurate measurements of soft X-ray absorption spectra in transmission mode of solutes in a liquid environment. As this type of measurement becomes increasingly accessible, there is a strong need for reliable theoretical methods for assisting in the interpretation of the experimental data. Coupled cluster methods have been extensively developed over the past decade to simulate X-ray absorption in the gas phase. Their performance for solvated species, on the contrary, remains largely unexplored. Here, we investigate the current state of the art of coupled cluster modeling of nitrogen -edge X-ray absorption of aqueous ammonia and ammonium based on quantum mechanics/molecular mechanics, where both the level of coupled cluster calculations and polarizable embedding are scrutinized. The results are compared to existing experimental data as well as simulations based on transition potential density functional theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450933 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.1c02031 | DOI Listing |
Adv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Department of Environmental Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey.
The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:
Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
Considering the potential risks of ferulic acid (FA), this study developed a novel fluorescent probe based on Zn-MOF for the efficient detection of FA in food. The Zn-MOF was successfully synthesized by solvothermal method, and its structure and stability were confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD). It exhibited strong fluorescence at 420 nm under 348 nm excitation, and maintained 92.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
An operando X-ray absorption spectroscopic technique, which enables us to measure X-ray absorption spectra with a position resolution of submicrometers at increased temperatures while controlling atmospheres and passing an electrical current through the specimen, was developed. By applying this technique, the electrochemically active area in a porous LaSrCoO electrode for a solid oxide fuel cell (SOFC) was experimentally and directly evaluated for the first time. The characteristic length of the active area was approximately 1 μm from the electrode-electrolyte interface under a cathodic overpotential of 140 mV at 873 K under 10 bar of (O), although the investigated electrode was thicker than 50 μm.
View Article and Find Full Text PDF