Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The emerging environmental issues necessitate the engineering of novel and well-designed nanoadsorbents for advanced separation and purification applications. Despite recent advances, the facile synthesis of hierarchical micro-mesoporous metal-organic frameworks (MOFs) with tuned structures has remained a challenge. Herein, we report a simple defect engineering approach to manipulate the framework, induce mesoporosity, and crease large pore volumes in MIL-101(Cr) by embedding graphene quantum dots (GQDs) during its self-assembly process. For instance, MIL-101@GQD-3 (V: 0.68 and V: 1.87 cm/g) exhibited 300.0% and 53.3% more meso and total pore volume compared to those of the conventional MIL-101 (V: 0.17 and V: 1.22 cm/g), respectively, resulting in 1.7 and 2.8 times greater benzene and toluene loading at 1 bar and 25 °C. In addition, we found that MIL-101@GQD-3 retained its superiority over a wide range of VOC concentrations and operating temperature (25-55 °C) with great cyclic capacity and energy-efficient regeneration. Considering the simplicity of the adopted technique to induce mesoporosity and tune the nanoporous structure of MOFs, the presented GQD incorporation technique is expected to provide a new pathway for the facile synthesis of advanced materials for environmental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125973DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
metal-organic frameworks
8
benzene toluene
8
facile synthesis
8
induce mesoporosity
8
defect engineering-induced
4
engineering-induced porosity
4
porosity graphene
4
dots embedded
4

Similar Publications

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.

View Article and Find Full Text PDF

Technologies and emerging trends in wearable biosensing.

Prog Mol Biol Transl Sci

September 2025

School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:

This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.

View Article and Find Full Text PDF