The Acquisition of Noun and Verb Categories by Bootstrapping From a Few Known Words: A Computational Model.

Front Psychol

Laboratoire de Sciences Cognitives et Psycholinguistique, Centre National de la Recherche Scientifique, École Normale Supérieure/PSL University, Paris, France.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While many studies have shown that toddlers are able to detect syntactic regularities in speech, the learning mechanism allowing them to do this is still largely unclear. In this article, we use computational modeling to assess the plausibility of a context-based learning mechanism for the acquisition of nouns and verbs. We hypothesize that infants can assign basic semantic features, such as "is-an-object" and/or "is-an-action," to the very first words they learn, then use these words, the , to ground proto-categories of nouns and verbs. The contexts in which these words occur, would then be exploited to bootstrap the noun and verb categories: unknown words are attributed to the class that has been observed most frequently in the corresponding context. To test our hypothesis, we designed a series of computational experiments which used French corpora of child-directed speech and different sizes of semantic seed. We partitioned these corpora in training and test sets: the model extracted the two-word contexts of the seed from the training sets, then used them to predict the syntactic category of content words from the test sets. This very simple algorithm demonstrated to be highly efficient in a categorization task: even the smallest semantic seed (only 8 nouns and 1 verb known) yields a very high precision (~90% of new nouns; ~80% of new verbs). Recall, in contrast, was low for small seeds, and increased with the seed size. Interestingly, we observed that the contexts used most often by the model featured function words, which is in line with what we know about infants' language development. Crucially, for the learning method we evaluated here, all initialization hypotheses are plausible and fit the developmental literature (semantic seed and ability to analyse contexts). While this experiment cannot prove that this learning mechanism is indeed used by infants, it demonstrates the feasibility of a realistic learning hypothesis, by using an algorithm that relies on very little computational and memory resources. Altogether, this supports the idea that a probabilistic, context-based mechanism can be very efficient for the acquisition of syntactic categories in infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416756PMC
http://dx.doi.org/10.3389/fpsyg.2021.661479DOI Listing

Publication Analysis

Top Keywords

learning mechanism
12
semantic seed
12
noun verb
8
verb categories
8
nouns verbs
8
test sets
8
learning
5
seed
5
acquisition noun
4
categories bootstrapping
4

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

A representation of the cause-effect mechanism is needed to enable artificial intelligence to represent how the world works. Bayesian Networks (BNs) have proven to be an effective and versatile tool for this task. BNs require constructing a structure of dependencies among variables and learning the parameters that govern these relationships.

View Article and Find Full Text PDF