Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A combination of plasmonic nanoparticles with a semiconductor is a feasible approach to realize multiple color exhibitions. The phenomenon is based on plasmon-driven charge separation between electrons and metal ions, but suitable only for light excitation with different wavelengths. Here, we introduce a color-adjustable method under monochromatic light irradiation. A smart strategy is proposed to construct sandwich structures of a hydrogel coating layer, thermally deposited Ag nanoparticles, and mesoporous matrices. The contacting mode of and nano-Ag at the Schottky interface is strongly dependent on the pore morphology of the oxide. Surface and interface plasmon resonances result in sample color switching from cyan to green and from brown to purple, respectively. The color response ability is further controlled by hydrogel coating, besides the exciting light wavelength. This Letter paves a bright way for colorful displays and information encryption.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.435405DOI Listing

Publication Analysis

Top Keywords

color response
8
monochromatic light
8
light irradiation
8
hydrogel coating
8
adjustable color
4
response plasmon
4
plasmon resonance
4
resonance monochromatic
4
light
4
irradiation combination
4

Similar Publications

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Color-thermal multispectral camouflage with VO-based dynamic regulator.

Light Sci Appl

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

To study the impact of pH-responsive labels prepared using traditional and different printing methods on fruit freshness monitoring and preservation, this study firstly optimized coaxial 3D printed labels by analyzing core-shell ratios and infill ratios, and predicted the impact of printing design on functionality of labels via four models. Then, the physicochemical properties of cast, dual-nozzle 3D printed, and coaxial 3D printed labels were compared. Finally, lightweight deep convolutional neural network models were used to enhance early warning intelligence.

View Article and Find Full Text PDF

Smartphone-assisted colorimetric detection of FEN1 and its inhibitors via RCA-magnetic beads-urease cascade amplification.

Biosens Bioelectron

September 2025

College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830017, China; State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy

Given the pivotal role of Flap endonuclease 1 (FEN1) in tumor pathogenesis and progression, the advancement of its activity and inhibitor assays holds significant importance for cancer research and drug screening. Herein, we proposed a convenient, visual and sensitive colorimetric biosensing platform for FEN1 activity detection by integrating the robust signal amplification power of rolling circle amplification (RCA), the target enrichment capability of magnetic beads (MB), and the high efficiency and visualization of urease-mediated litmus test. Based on the significant color transition with a clear response mechanism, quantitative analysis can be achieved by either spectroscopic or smartphone-based detection.

View Article and Find Full Text PDF