98%
921
2 minutes
20
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01868 | DOI Listing |
Anal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFPediatr Pulmonol
September 2025
Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.
Background: The approval of cystic fibrosis transmembrane conductance regulator modulators elexacaftor/tezacaftor/ivacaftor (ETI), has significantly improved pulmonary function for people with cystic fibrosis (pwCF). However, the effects on CF-related bone disease and body composition remain unclear.
Methods: This retrospective real-world study examined adults with CF who received ETI treatment.
Medicine (Baltimore)
September 2025
Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey.
Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.
View Article and Find Full Text PDFFood Res Int
November 2025
Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:
Crab encounters obstacles like elevated transportation expense and diminished survival rate. In the study, the effects of cold anesthesia (CA), including fast cooling (FC) and slow cooling (SC) anesthesia on the vitality state and muscle quality of Chinese mitten crab were researched. We found firstly that the CA dormancy temperature range of Chinese mitten crab was identified from -2 to 10 °C, and 7 °C was optimal.
View Article and Find Full Text PDF