98%
921
2 minutes
20
Seed maturation comprises important developmental processes, such as seed filling and the acquisition of seed germination capacity, desiccation tolerance, longevity, and dormancy. The molecular regulation of these processes is tightly controlled by the LAFL transcription factors, among which was shown to be involved in most of these seed maturation processes. Here, we studied the gene from a model legume plant for seed studies. With the transcriptomes of two loss-of-function mutants, we were able to show that many gene classes were impacted by the mutation at different stages of early, middle, and late seed maturation. We also discovered three expression isoforms, which present contrasting expression patterns during seed development. Moreover, by ectopically expressing these isoforms in hairy roots generated from the mutant line background, we showed that each isoform regulated specific gene clusters, suggesting divergent molecular functions. Furthermore, we complemented the mutant with each of the three isoforms and concluded that all isoforms were capable of restoring seed viability and desiccation tolerance phenotypes even if not all isoforms complemented the seed color phenotype. Taken together, our results allow a better understanding of the ABI3 network in during seed development, as well as the discovery of commonly regulated genes from the three isoforms, which can give us new insights into how desiccation tolerance and seed viability are regulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398556 | PMC |
http://dx.doi.org/10.3390/plants10081710 | DOI Listing |
Bull Environ Contam Toxicol
September 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, India.
QuEChERS method of extraction followed by detection with Liquid Chromatograph Mass spectrometry was carried out to determine persistence of tetraniliprole and its metabolite in pigeon pea. The mean recovery of tetraniliprole and its metabolite BCS-CQ 63359 in immature and mature pods, seeds and grains of pigeon pea and soil were in the range of 76.38-105.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
Candida spp. are opportunistic fungi capable of forming biofilms, a key factor contributing to their resistance to conventional antifungals. This highlights the need for novel compounds with distinct mechanisms of action to combat fungal infections.
View Article and Find Full Text PDFGlobal fruit production suffers from pre- and post-harvest losses, part of which are related to metal deficiencies. Despite fruits being one of the most widely consumed plant parts, the spatial distribution of metals and their possible physiological impact remained largely unexplored. In this study, we searched for conserved metal accumulation sites in fruits of various crops and investigated their physiological function.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
Rising atmospheric carbon dioxide (CO₂) levels are expected to enhance biomass and yield in C crops. However, these benefits are accompanied by significant reductions in the concentrations of essential nutrients in both foliar and edible tissues, posing potential global nutritional challenges. In this study, we grew three soybean cultivars (Clark, Flyer, and Loda) in ambient ( ~ 438 ppm) and elevated CO₂ ( ~ 650 ppm) conditions using open top chambers and measured changes in leaf-level physiological responses, biomass accumulation, and nutrient concentrations across developmental stages.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China. sun
Soybean seed physical characteristics are crucial for quality assessment, but the link between these characteristics and biochemical composition across different maturity groups (MGs) remains unclear. This study examined the relationships between seed physical characteristics (color and weight) and biochemical constituents, including oil content (OC), protein content (PC), and fatty acid (FA) composition in 191 diverse soybean accessions across eight MGs (0-VII) at three locations over two years. The results indicated that black-seeded accessions demonstrated a notably higher average of PC (47.
View Article and Find Full Text PDF