Efficiency of mesoporous silica/carboxymethyl β-glucan as a fungicide nano-delivery system for improving chlorothalonil bioactivity and reduce biotoxicity.

Chemosphere

Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China. Electronic addre

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the lethal effects of pesticides nano formulations on the targeted organisms (pathogens) and the non-targeted organisms (fish, earthworms, etc) is essential in assessing the probable impact of new technologies on agriculture and environment. Here we evaluated the bioactivity and the biotoxicity of new type of fungicide smart-delivery formulation based on conjugating carboxymethylated-β-glucans on the mesoporous silica nanoparticles (MSNs) surface after loading chlorothalonil (CHT) fungicide in the MSNs pores. The obtained formulation has been characterized with FE-SEM, and HR-TEM. The CHT loading efficiency has been measured with TGA. The bioactivity of the obtained formulation (CHT@MSNs-β-glucans) has been tested against four pathogens, fusarium head blight (Fusarium graminearum), sheath rot (Sarocladium oryzae), rice sheath blight (Rhizoctonia solani), and soyabean anthracnose (Colletotrichum truncatum) compared with CHT WP 75% commercial formulation (CHT-WP) and technical CHT. The environmental biotoxicity of CHT@MSNs-β-glucans compared with CHT-WP has been tested toward earthworm (Eisenia fetida) and zebra fish (Danio rerio). The results showed that CHT@MSNs-β-glucans has an excellent bioactivity against the subjected pathogens with better inhabiting effects than CHT-WP. CHT@MSNs-β-glucans toxicity to Eisenia fetida was found 2.25 times lower than CHT-WP toxicity. The LC of CHT@MSNs-β-glucans to zebra fish after the first 24h was 2.93 times higher than CHT-WP. After 96h of treatment, the LC of CHT@MSNs-β-glucans was 2.66 times higher than CHT-WP. This work highlighted the necessity to increase the mandatory bioassays of nano formulations with the major non-target organisms in the environmental risk assessment of new pesticide formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131902DOI Listing

Publication Analysis

Top Keywords

nano formulations
8
eisenia fetida
8
zebra fish
8
times higher
8
higher cht-wp
8
cht@msns-β-glucans
6
cht-wp
6
efficiency mesoporous
4
mesoporous silica/carboxymethyl
4
silica/carboxymethyl β-glucan
4

Similar Publications

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Isatin (1-indole-2,3-dione) is a privileged nitrogen-containing heterocyclic framework that has received considerable attention in anticancer drug discovery owing to its general biological behavior and structural diversity. This review focuses on isatin-heterocyclic hybrids as a valuable model in the development of new anti-cancer drugs that may reduce side effects and help overcome drug resistance, discussing their synthetic approaches and mechanism of action as apoptosis induction through kinase inhibition. With various chemical modifications, isatin had an excellent ability to build powerful isatin hybrids and conjugates targeting multiple oncogenic pathways.

View Article and Find Full Text PDF

This study developed a vegan chocolate spread using spray-dried plant-based milk powders (soy, lentil, and rice), fortified with nano-liposomal vitamin D3 and an oleogel-balanced omega fatty acid to enhance nutritional quality. The plant-based milk powders exhibited high protein (up to 26.8% in soy), fiber, and micronutrients.

View Article and Find Full Text PDF

Nanotechnology has revolutionized drug delivery, which offers innovative ways to maximize treatment efficacy while decreasing side effects. The lyotropic liquid crystalline nanoparticles (LLCNP), such as cubosomes and hexosomes, have gained substantial interest because of their distinctive molecular arrangements. Lipophilic, hydrophilic, and amphiphilic drugs can be encapsulated by cubosomes, making them versatile carriers in drug delivery systems.

View Article and Find Full Text PDF