Assessment of Root Canal Sealers Loaded with Drug-Silica Coassembled Particles Using an In Vitro Tooth Model.

J Endod

Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The purpose of this study was to assess the antimicrobial activity of root canal sealers modified with novel highly loaded antimicrobial drug-silica coassembled particles (DSPs) on Enterococcus faecalis-infected root canal dentin.

Methods: DSPs were synthesized through coassembly of silica and octenidine dihydrochloride (OCT) surfactant drug (35% w/w OCT). DSPs (1% wt of the total mass of the sealer) were mixed homogenously with either epoxy resin sealer (AH Plus [AH]; Dentsply Sirona, Tulsa, OK) or calcium silicate-based sealer (EndoSequence BC Sealer [BC]; Brasseler, Savannah, GA). To assess the antimicrobial activity of DSP-loaded sealers, the apical third of single-rooted teeth was obtained and infected with E. faecalis for 3 weeks followed by the application of experimental (DSP-loaded) sealers or corresponding controls for up to 28 days. Microbiological analysis and laser scanning confocal and scanning electron microscopy were used to determine the colony-forming unit (CFU)/mL, the percentage of live bacteria, and the intratubular bacterial and sealer penetrations. Factorial analysis of variance and Tukey post hoc tests were used to assess the antimicrobial effect of DSPs on different sealers.

Results: All experimental groups showed significant reductions in CFUs at all-time points compared with positive controls (P < .05). The addition of DSPs to BC significantly reduced the CFUs (2.11 ± 0.13, 2.22 ± 0.19, and 2.25 ± 0.17 at 1, 7, and 28 days, respectively) compared with the unmodified sealer (3.21 ± 0.11, 4.3 ± 0.15, and 4.2 ± 0.2 at 0, 7, and 28 days). DSPs enhanced the antimicrobial performance of AH only at 1 day (4.21 ± 0.17 vs 5.19 ± 0.12, P < .05). AH and AH + DSPs showed higher bacterial viability compared with BC and BC + DSPs at all incubation periods (P < .05).

Conclusions: Loading endodontic sealers with DSPs had a material-dependent effect on the antimicrobial properties and could reduce the incidence of secondary infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2021.08.005DOI Listing

Publication Analysis

Top Keywords

root canal
12
assess antimicrobial
12
canal sealers
8
drug-silica coassembled
8
coassembled particles
8
antimicrobial activity
8
dsp-loaded sealers
8
sealer
5
assessment root
4
sealers
4

Similar Publications

Finite Element Analysis of Endodontically Treated Mandibular Second Molars With Variable Root Morphologies: Endocrown vs. Post-And-Core Crown Restorations.

Aust Endod J

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

This study aimed to investigate the biomechanical impact of root canal anatomical variations and restoration techniques on endodontically treated mandibular second molars using finite element analysis. Five root morphologies were modelled: separated-rooted (S), fused-rooted with V-shaped (F-V), U-shaped (F-U) or Ω-shaped (F-Ω) radicular grooves and single-canal fused-rooted (F-O). Micro-CT scans were performed before and after endodontic instrumentation to generate the finite element models: intact teeth, post-and-core crowns with 2- to 3-mm ferrules and endocrowns with 3- to 4-mm pulp chamber extensions.

View Article and Find Full Text PDF

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

This study aimed to investigate the age-related alterations in mesial roots of mandibular first molar in terms of root canal curvature values, dentin thickness, interorifice distance, deviation from apical foramen, and location of apical foramen using a three-dimensional curvature measurement method and micro-computed tomography (micro-CT). Forty-five mesial roots of mandibular first molars from three age groups (Group 1: ≤ 30 years, Group 2: 31-59 years, Group 3: ≥ 60 years) were scanned using micro-CT. The central axis of each mesiobuccal and mesiolingual canal was analyzed using cubic B-spline curves to calculate canal curvature.

View Article and Find Full Text PDF

Background And Aim: The incisive (nasopalatine) canal is an important anatomical structure of the anterior maxilla. It holds significance for surgeries and implant placement in the central incisor region. The size, shape, and relation with surrounding bones may vary by age, gender, and ethnicity.

View Article and Find Full Text PDF

Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.

View Article and Find Full Text PDF