98%
921
2 minutes
20
Lysozyme (Lyz) is an important antibacterial protein that exists widely in nature. In recent years, the application of graphene oxide (GO) in the field of biotechnology electronics, optics, chemistry and energy storage has been extensively studied. However, due to the unique properties of GO, the mechanism of its interaction with biomacromolecule proteins is very complex. To further explore the interaction between GO and proteins we explore the influence of different pH and heat treatment conditions on the interaction between GO and Lyz, the GO (0-20 μg/mL) was added at a fixed Lyz concentration (0.143 mg/mL) under different pHs. The structure and surface charge changes of Lyz were measured by spectroscopic analysis and zeta potential. The results showed that the interaction between GO and Lyz depends on temperature and pH, significant changes have taken place in its tertiary and secondary structures. By analyzing the UV absorption spectrum, it was found that lysozyme and GO formed a stable complex, and the conformation of the enzyme was changed. In acidic pH conditions (i.e., pH < pI), a high density of Lyz were found to adsorb on the GO surface, whereas an increase in pH resulted in a progressive decrease in the density of the adsorbed Lyz. This pH-dependent adsorption is ascribed to the electrostatic interactions between the negatively charged GO surface and the tunable ionization of the Lyz molecules. The secondary structure of Lyz adsorbed on GO was also found to be highly dependent on the pH. In this paper, we investigated the exact mechanism of pH-influenced GO binding to lysozyme, which has important guidance significance for the potential toxicity of GO biology and its applications in biomedical fields such as structure-based drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120207 | DOI Listing |
ACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFLangmuir
September 2025
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan China.
Maximizing the exposure of edge sites and achieving sufficient promotion remain arduous tasks for designing efficient bimetallic MoS-based catalysts. Herein, ultrathin CoMoS nanosheets vertically grown on reduced graphene oxide (CoMoS/rGO-DMF) were fabricated by a facile one-pot solvothermal method using dimethylformamide (DMF) as solvent. The vertically aligned structure and good Co promotion endow CoMoS/rGO-DMF with abundant Co-Mo-S active sites and excellent catalytic performance in the hydrodeoxygenation (HDO) reaction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Selcuk University, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey. Electronic address:
This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.
View Article and Find Full Text PDF