Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article investigates the problem of global neural network (NN) tracking control for uncertain nonlinear systems in output feedback form under disturbances with unknown bounds. Compared with the existing NN control method, the differences of the proposed scheme are as follows. The designed actual controller consists of an NN controller working in the approximate domain and a robust controller working outside the approximate domain, in addition, a new smooth switching function is designed to achieve the smooth switching between the two controllers, in order to ensure the globally uniformly ultimately bounded of all closed-loop signals. The Lyapunov analysis method is used to strictly prove the global stability under the combined action of unmeasured states and system uncertainties, and the output tracking error is guaranteed to converge to an arbitrarily small neighborhood through a reasonable selection of design parameters. A numerical example and a practical example were put forward to verify the effectiveness of the control strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3102274DOI Listing

Publication Analysis

Top Keywords

neural network
8
network tracking
8
controller working
8
working approximate
8
approximate domain
8
smooth switching
8
globally adaptive
4
adaptive neural
4
tracking uncertain
4
uncertain output-feedback
4

Similar Publications

A spatial-frequency hybrid restoration network for JPEG compressed image deblurring.

Neural Netw

September 2025

organization=Chongqing Key Laboratory of Computer Network and Communication Technology, School of Computer Science and Technology (National Exemplary Software School), Chongqing University of Posts and Telecommunications, city=Chongqing, postcode=400065, country=China. Electronic address: tianh519@1

Image deblurring and compression-artifact removal are both ill-posed inverse problems in low-level vision tasks. So far, although numerous image deblurring and compression-artifact removal methods have been proposed respectively, the research for explicit handling blur and compression-artifact coexisting degradation image (BCDI) is rare. In the BCDI, image contents will be damaged more seriously, especially for edges and texture details.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

Background: Primary liver cancer, particularly hepatocellular carcinoma (HCC), poses significant clinical challenges due to late-stage diagnosis, tumor heterogeneity, and rapidly evolving therapeutic strategies. While systematic reviews and meta-analyses are essential for updating clinical guidelines, their labor-intensive nature limits timely evidence synthesis.

Objective: This study proposes an automated literature screening workflow powered by large language models (LLMs) to accelerate evidence synthesis for HCC treatment guidelines.

View Article and Find Full Text PDF

The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.

View Article and Find Full Text PDF