Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As a valuable natural antioxidant, sesaminol can be used in food and medicine industries, but it is trace in sesame seeds and oil, and it is feasible to prepare sesaminol from sesaminol triglucoside (STG) which is abundant in defatted sesame cake. Therefore, in order to establish an effective enzymatic preparation method and elucidate the antioxidant structure-activity relationship of sesaminol, a suitable glycosidase for preparing sesaminol from STG were screened, enzymatic hydrolysis was optimized by single-factor test and response surface methodology, and finally, the structure-activity relationship of sesaminol was illustrated by comparative molecular field analysis (CoMFA). These results suggested that β-galactosidase was the optimal glycosidase for enzymatic hydrolysis of STG to prepare sesaminol. Under the optimal conditions of a reaction temperature of 50°C, reaction time of 4.0 h, pH of 5.5, substrate concentration of 1.0 mg/mL, and enzyme dosage of 20 mg/mL, the conversion rate of sesaminol was 98.88±0.67%. Sesaminol displayed excellent antioxidant ability in 2,2-diphenyl-1-picrylhydrazyl (DPPH, IC = 0.0011 mg/mL), 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonate) (ABTS, IC = 0.0021 mg/mL) radical scavenging activities and Ferric reducing antioxidant power (FRAP, 103.2998 mol/g) compared to other sesaminol derivatives. According to -log (IC of DPPH) and -log (IC of ABTS), CoMFA models were successfully established based on Q >0.5 (Q = 0.558, Q = 0.534). The active site of sesaminol tended to be located on the hydroxyl group of the benzene ring (R position). A positive correlation between the bulky and positively charged groups at the 1H, 3H-furo [3, 4-c] furan group, the small, negatively charged groups at the R position and the antioxidant activity of sesaminol. This study provides an effective method to prepare sesaminol, reveals the structure-activity relationship of sesaminol and provides theoretical basis to design the novel compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.ess21112 | DOI Listing |