98%
921
2 minutes
20
is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in . Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of . The promoter of (P ) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of P , and mutant promoters exhibiting high strength were isolated fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of encoding a lysine exporter and repress four genes involved in lysine biosynthesis (, , , and ) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in and holds promise for metabolic engineering of to produce valuable chemicals and fuels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334368 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.718511 | DOI Listing |
J Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.
View Article and Find Full Text PDFAdv Biol Regul
August 2025
Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address:
Biomolecular condensates are key organizers of the intracellular environment, which are formed through liquid-liquid phase separation. Glycolytic condensates constitute a subtype of biomolecular condensates that enable compartmentalized ATP production and efficient metabolite channeling under stress conditions. This review explores how stressors, such as hypoxia, glucose deprivation, hyperosmotic stress, and hyperthermia, induce the formation of glycolytic condensates.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, c/Julian Claveria 6, Oviedo, 33006, Spain.
Streptomycetes are biotechnologically valuable bacteria with complex cell division that produce extracellular vesicles (EVs), typically nanometre-sized but can reach 2.5 μm in diameter. Streptomyces also produce dividing wall-deficient L-forms (0.
View Article and Find Full Text PDF