Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Quiescin Q6 sulfhydryl oxidase 2 (QSOX2), an enzyme that can be directly secreted into the extracellular space, is known to be associated with oxidative protein folding. However, whether is abnormally expressed in non-small cell lung cancer (NSCLC) and its role in tumor growth remains unclear.

Methods: Real-time quantitative PCR (qPCR), immunohistochemistry (IHC), bioinformatics analyses were applied to analyze the expression pattern and prognostic significance of QSOX2 in NSCLC. Xenografts model, enzyme-linked immunosorbent assays (ELISA), western blot analysis (WB), and IHC were preformed to examine tumor suppression and intracellular and extracellular expression of QSOX2. Flow cytometry, WB and qPCR analyses were used to elucidate the role of QSOX2 in cell cycle regulation. Chromatin immunoprecipitation assay (ChIP) assay and Dual-Luciferase reporter assay were employed to investigate transcriptional regulation of by E2F Transcription Factor 1 ().

Results: Quiescin sulfhydryl oxidase 2 was significantly overexpressed in NSCLC and associated with poor survival in advanced-stage patients. The intracellular and extracellular expression of QSOX2 by tumor cells markedly decreased after anti-cancer therapy , and in the clinic. Moreover, silencing in NSCLC cell lines resulted in inhibition of cancer cell proliferation, induction of apoptosis, and decreased expression of cell division-related genes (CENPF and NUSAP1) and Wnt pathway activators (PRRX2 and Nuc-β-catenin). Mechanistically, QSOX2 was expressed periodically during cell cycle and directly regulated by E2F1.

Conclusions: Our findings demonstrate that QSOX2 is directly regulated by E2F1 in the cell cycle, which is essential for the proliferation of NSCLC cells. Furthermore, QSOX2 is a prognostic indicator for NSCLC and may be developed into a biomarker for monitoring tumor burden and therapeutic progress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326667PMC
http://dx.doi.org/10.3389/fcell.2021.688798DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
qsox2
9
biomarker monitoring
8
monitoring tumor
8
tumor growth
8
quiescin sulfhydryl
8
sulfhydryl oxidase
8
intracellular extracellular
8
extracellular expression
8
expression qsox2
8

Similar Publications

While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.

View Article and Find Full Text PDF

The E2F family of transcription factors are key regulators of the cell cycle in all metazoans. While they are primarily known for their role in cell cycle progression, E2Fs also play broader roles in cellular physiology, including the maintenance of exocrine tissue homeostasis. However, the underlying mechanisms that render exocrine cells particularly sensitive to E2F deregulation remain poorly understood.

View Article and Find Full Text PDF

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

The Effect of Cachexia on the Feeding Regulation of Skeletal Muscle Protein Synthesis in Tumour-Bearing Mice.

J Cachexia Sarcopenia Muscle

September 2025

Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF