Verifying the Usefulness of Pulmonary Blood Flow Studies in the Correction of Pulmonary Atresia and Ventricular Septal Defect with Major Aortopulmonary Collateral Arteries.

Cardiol Res Pract

Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We retrospectively analyzed the surgical results of pulmonary blood flow studies to guide ventricular septal defect (VSD) closure in the correction of pulmonary atresia and ventricular septal defect with major aortopulmonary collateral arteries (PA/VSD/MAPCAs).

Methods: A total of 57 children who were diagnosed with PA/VSD/MAPCAs and who underwent intraoperative pulmonary blood flow studies at our hospital between August 2016 and June 2019 were included. Surgery and cardiopulmonary bypass records were collected. The receiver operating characteristic (ROC) curve was used to verify the accuracy of pulmonary blood flow studies to predict VSD closure.

Results: Complete VSD closure was achieved in 39 of 57 children (68.42%), with a median age of 2 years and 5 months (range: 7 months to 15 years and 9 months) and a median weight of 11.0 kg (5.7-36.5 kg). Partial VSD repair was recorded for 21 children (36.84%), including 4 children (19.05%) who underwent VSD closure in the later stages and 13 children (61.90%) who were under follow-up and waiting to undergo complete VSD closure. There was only one child (1.75%) with VSD left. After eliminating the data of four unqualified cases, the ROC curve for predicting VSD closure based on 53 pulmonary blood flow studies was obtained at a value of <0.001, with an area under the curve of 0.922. The maximum Youden's index was 0.713, which corresponded to an optimal mean pulmonary artery pressure cutoff value of 24.5 mmHg.

Conclusion: The functional evaluation provided by pulmonary blood flow studies is highly accurate to predict intraoperative VSD repair. We recommend using pulmonary blood flow studies with a mean pulmonary artery pressure of ≤25 mmHg during blood perfusion at 3.0 L/min/m as the standard to repair VSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325581PMC
http://dx.doi.org/10.1155/2021/3483976DOI Listing

Publication Analysis

Top Keywords

pulmonary blood
20
blood flow
20
flow studies
20
vsd closure
20
ventricular septal
12
septal defect
12
correction pulmonary
8
pulmonary atresia
8
atresia ventricular
8
defect major
8

Similar Publications

Background: Postoperative cognitive dysfunction (POCD) occurs in 20% to 80% of patients following cardiac surgical interventions. The incidence of delirium is from 20% to 50%. Impaired cerebral autoregulation (CA) during cardiopulmonary bypass (CPB) contributes to these issues.

View Article and Find Full Text PDF

Background: Percutaneous transthoracic lung biopsy (PTNB) guided by Computed Tomography (CT) greatly depends on the operators' skill for accuracy. This study aimed to evaluate whether three-dimensionally(3D) printed navigational templates for percutaneous transthoracic lung biopsy achieve diagnostic yield comparable to conventional computed tomography guidance.

Materials And Methods: Conducted from 1 November 2020, to 27 July 2023, this noninferiority randomized clinical trial included 159 patients with peripheral lung masses (≥30 mm).

View Article and Find Full Text PDF

Sudden Death Caused by Bilateral Diaphragmatic Eventration in Myotonic Dystrophy Type 1.

Am J Forensic Med Pathol

September 2025

Department of Pathology, St Louis University School of Medicine, Office of the Medical Examiner - City of St. Louis, St. Louis, MO.

Myotonic dystrophy type 1, or dystrophia myotonica type 1 (DM1), is a multisystem disorder inherited in an autosomal dominant manner. It is caused by a CTG tri-nucleotide expansion in the 3'-untranslated region (3'-UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Core clinical features include progressive skeletal muscle weakness, myotonia, and systemic complications, with premature mortality most often due to respiratory or cardiac dysfunction.

View Article and Find Full Text PDF

Objectives: Elevated intracranial pressure (ICP) is a complication of severe traumatic brain injury (TBI) that carries a risk of secondary brain injury. This study investigated the association between ICP burden and brain injury patterns on MRI in children with severe TBI.

Design, Setting, And Patients: Secondary analysis of the Approaches and Decisions in Acute Pediatric TBI (ADAPT) study, which included children with severe TBI (Glasgow Coma Scale score < 9) who received a clinical MRI within 30 days of injury.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.

View Article and Find Full Text PDF