Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Currently, it is critical but a tricky point to develop economical, high-efficiency, and durable non-precious metal electrocatalysts towards oxygen reduction and oxygen evolution reaction (ORR/OER) in rechargeable Zn-air batteries. Herein, N, Mn-codoped three-dimensional (3D) fluffy porous carbon nanostructures encapsulating FeCo/FeCoP alloyed nanoparticles (FeCo/FeCoP@NMn-CNS) are prepared by one-step pyrolysis of the metal precursors and polyinosinic acid. The optimized hybrid nanocomposite (obtained at 800 °C, named as FeCo/FeCoP@NMn-CNS-800) exhibits outstanding catalytic performance in the alkaline electrolyte with a half-wave potential (E) of 0.84 V for the ORR and an overpotential of 325 mV towards the OER at 10 mA cm. Impressively, the FeCo/FeCoP@NMn-CNS-800-assembled rechargeable Zn-air battery presents an open-circuit voltage of 1.522 V (vs. RHE), a peak power density of 135.0 mW cm, and long-term durability by charge-discharge cycling for 200 h, surpassing commercial Pt/C + RuO based counterpart. This work affords valuable guidelines for exploring advanced bifunctional ORR and OER catalysts in rational construction of high-quality Zn-air batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.07.082 | DOI Listing |