98%
921
2 minutes
20
Color appearance models use standard color matching functions to derive colorimetric information from spectral radiometric measurements of a visual environment, and they process that information to predict color perceptual attributes such as hue, chroma and lightness. That processing is usually done by equations with fixed numerical coefficients that were predetermined to yield optimal agreement for a given standard observer. Here we address the well-known fact that, among color-normal observers, there are significant differences of color matching functions. These cause disagreements between individuals as to whether certain colors match, an important effect that is often called observer metamerism. Yet how these individual sensitivity differences translate into differences in perceptual metrics is not fully addressed by many appearance models. It might seem that appearance could be predicted by substituting an individual's color matching functions into an otherwise-unchanged color appearance model, but this is problematic because the model's coefficients were not optimized for the new observer. Here we explore a solution guided by the idea that processes of adaptation in the visual system tend to compensate color perception for differences in cone responses and consequent color matching functions. For this purpose, we developed a simple color appearance model that uses only a few numerical coefficients, yet accurately predicts the perceptual attributes of Munsell samples under a selected standard lighting condition. We then added a feedback loop to automatically adjust the model coefficients, in response to switching between cone fundamentals simulating different observers and color matching functions. This adjustment is intended to model long term contrast adaptation in the vision system by maintaining average overall color contrast levels. Incorporating this adaptation principle into color appearance models could allow better assessments of displays and illumination systems, to help improve color appearances for most observers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320589 | PMC |
http://dx.doi.org/10.1002/col.22620 | DOI Listing |
Food Chem
September 2025
Group of Chemical Analysis and Chemometrics, Department of Chemistry, Federal University of Paraná, P.O. Box: 19032, Curitiba, PR 81531-980, Brazil. Electronic address:
Yerba mate, a key crop in South America, is prized for its pleasant taste and high organoleptic quality, often linked to lower branch content. To quantify branch content and authenticate high-quality samples (less than 30 % m/m branch content), a Chemometrics-assisted Color Histogram-based Analytical System (CACHAS) was employed. Using Hue-Saturation-Value (HSV) histograms, Partial Least Squares (PLS) demonstrated excellent predictive performance, achieving a root mean square error (RMSEP) of 4.
View Article and Find Full Text PDFTalanta
September 2025
Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, Karaman, 70100, Turkey.
Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.
View Article and Find Full Text PDFEur J Clin Pharmacol
September 2025
Department of Clinical Pharmacy and Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands.
Purpose: Non-adherence to inhaled medication poses a significant clinical and economic burden on patients with respiratory diseases. This narrative review provides an overview of key aspects of hair analysis, in general and specific for inhaled medications, and explores the potential of hair analysis as a novel tool to monitor adherence to inhaled medications.
Methods: PubMed searches were conducted to explore four aspects: (1) mechanisms of (inhaled) drug's systemic absorption and deposition in hair; (2) quantification of drugs in hair; (3) factors impacting (inhaled) drug hair concentrations; and (4) clinical studies assessing inhaled medication adherence through hair analysis.
Physiol Plant
September 2025
School of Forestry and Grassland Science, Ningxia University, Yinchuan, China.
Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.
View Article and Find Full Text PDFACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDF