Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The pancreas is a vital organ with digestive and endocrine roles, and diseases of the pancreas affect millions of people yearly. A better understanding of the pancreas proteome and its dynamic post-translational modifications (PTMs) is necessary to engineer higher fidelity tissue analogues for use in transplantation. The extracellular matrix (ECM) has major roles in binding and signaling essential to the viability of insulin-producing islets of Langerhans. To characterize PTMs in the pancreas, native and decellularized tissues from four donors were analyzed. -Glycosylated and phosphorylated peptides were simultaneously enriched electrostatic repulsion-hydrophilic interaction chromatography and analyzed with mass spectrometry, maximizing PTM information from one workflow. A modified surfactant and chaotropic agent assisted sequential extraction/on-pellet digestion was used to maximize solubility of the ECM. The analysis resulted in the confident identification of 3650 proteins, including 517 -glycoproteins and 148 phosphoproteins. We identified 214 ECM proteins, of which 99 were -glycosylated, 18 were phosphorylated, and 9 were found to have both modifications. Collagens, a major component of the ECM, were the most highly glycosylated of the ECM proteins and several were also heavily phosphorylated, raising the possibility of structural and thus functional changes resulting from these modifications. To our knowledge, this work represents the first characterization of PTMs in pancreatic ECM proteins. This work provides a basal profile of PTMs in the healthy human pancreatic ECM, laying the foundation for future investigations to determine disease-specific changes such as in diabetes and pancreatic cancer, and potentially helping to guide the development of tissue replacement constructs. Data are available ProteomeXchange with identifier PXD025048.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511275PMC
http://dx.doi.org/10.1039/d1mo00104cDOI Listing

Publication Analysis

Top Keywords

ecm proteins
12
extracellular matrix
8
post-translational modifications
8
electrostatic repulsion-hydrophilic
8
repulsion-hydrophilic interaction
8
interaction chromatography
8
mass spectrometry
8
-glycosylated phosphorylated
8
pancreatic ecm
8
ecm
7

Similar Publications

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF

Objective: To explore the impact of Tripterygium wilfordii glycosides (TWG) on glomerulosclerosis within a rat model of chronic kidney disease (CKD), as well as the role of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in this mechanism.

Methods: Twenty-four clean Sprague-Dawley rats were divided into Sham group (n = 8), model group (n = 8) and TWG group (n = 8). Adriamycin nephropathy (ADRN) rat model was established by jugular vein injection of adriamycin (ADR).

View Article and Find Full Text PDF

The tumor microenvironment (TME) is a complex system composed of the extracellular matrix (ECM) and various cell types, with collagen being one of its core components. Collagen heterogeneity profoundly influences tumor progression and the remodeling of the immune microenvironment by regulating tumor cell behavior, signaling pathways, and immune evasion in TME. Different subtypes of collagen significantly affect tumor growth, metastasis, and therapeutic responses by modulating the infiltration and function of immune cells.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF