Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Visual processing of the body movements of other animals is important for adaptive animal behaviors. It is widely known that animals can distinguish articulated animal movements even when they are just represented by points of light such that only information about biological motion is retained. However, the extent to which nonhuman great apes comprehend the underlying structural and physiological constraints affecting each moving body part, i.e., biomechanics, is still unclear. To address this, we examined the understanding of biomechanics in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), following a previous study on humans (Homo sapiens). Apes underwent eye tracking while viewing three-dimensional computer-generated (CG) animations of biomechanically possible or impossible elbow movements performed by a human, robot, or nonhuman ape. Overall, apes did not differentiate their gaze between possible and impossible movements of elbows. However, some apes looked at elbows for longer when viewing impossible vs. possible robot movements, which indicates that they may have had knowledge of biomechanics and that this knowledge could be extended to a novel agent. These mixed results make it difficult to draw a firm conclusion regarding the extent to which apes understand biomechanics. We discuss some methodological features that may be responsible for the results, as well as implications for future nonhuman animal studies involving the presentation of CG animations or measurement of gaze behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10329-021-00932-8DOI Listing

Publication Analysis

Top Keywords

understanding biomechanics
8
three-dimensional computer-generated
8
computer-generated animations
8
biomechanics
5
movements
5
apes
5
great apes'
4
apes' understanding
4
biomechanics eye-tracking
4
eye-tracking experiments
4

Similar Publications

Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework.

View Article and Find Full Text PDF

Peritoneal Dialysis (PD) requires a healthy and functional peritoneal membrane for adequate ultrafiltration and fluid balance, making it a vital treatment for patients with end-stage renal disease (ESRD). The spectrum of PD-associated peritoneal fibrosis encompasses a diverse range of collective mechanisms: peritoneal fibrogenesis, epithelial to mesenchymal transition (EMT), peritonitis, angiogenesis, sub-mesothelial immune cells infiltration, and collagen deposition in the sub-mesothelial compact zone of the membrane that accompany deteriorating membrane function. In this narrative review, we summarize the repertoire of current knowledge about the structure, function, and pathophysiology of the peritoneal membrane, focusing on biomolecular mechanisms and signalling pathways that potentiate the development and progression of peritoneal fibrosis.

View Article and Find Full Text PDF

The Body Speaks: What Do Nurses Hear?

Nurs Inq

October 2025

Trudy Busch Valentine School of Nursing, Saint Louis University, St. Louis, Missouri, USA.

The nursing discipline has a rich legacy in understanding disease in human terms. Efforts to strengthen this understanding are reflected in calls for holistic, person-centered care. Person-centered care, however, will remain largely aspirational as long as the biomechanical paradigm of the body that descends from Descartes' thought is privileged in health care.

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Dome-shaped macula (DSM) is a distinctive anatomical entity characterized by an inward convexity of the macula, initially described in highly myopic eyes within posterior staphyloma, but it is now recognized as occurring across a broader spectrum of refractive conditions, including mild myopia and even emmetropia. Since its initial description in 2008, advances in imaging technologies and longitudinal studies have significantly improved our understanding of DSM. This review analyzed the recent literature, focusing on publications from the last 10 years.

View Article and Find Full Text PDF