Glandular Tissue Component and Breast Cancer Risk in Mammographically Dense Breasts at Screening Breast US.

Radiology

From the Departments of Radiology (S.H.L., S.M.H., S.Y.K., J.M.C., N.C., W.K.M.) and Pathology (H.S.R.), College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republi

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background Breast density at mammography is an established risk factor for breast cancer, but it cannot be used to distinguish between glandular and fibrous tissue. Purpose To evaluate the association between the glandular tissue component (GTC) at screening breast US and the risk of future breast cancer in women with dense breasts and the association between the GTC and lobular involution. Materials and Methods Screening breast US examinations performed in women with no prior history of breast cancer and with dense breasts with negative findings from mammography from January 2012 to December 2015 were retrospectively identified. The GTC was reported as being minimal, mild, moderate, or marked at the time of the US examination. In women who had benign breast biopsy results, the degree of lobular involution in normal background tissue was categorized as not present, mild, moderate, or complete. The GTC-related breast cancer risk in women with a cancer diagnosis or follow-up after 6 months was estimated by using Cox proportional hazards regression. Cumulative logistic regression was used to evaluate the association between the GTC and lobular involution. Results Among 8483 women (mean age, 49 years ± 8 [standard deviation]), 137 developed breast cancer over a median follow-up time of 5.3 years. Compared with a minimal or mild GTC, a moderate or marked GTC was associated with an increased cancer risk (hazard ratio, 1.5; 95% CI: 1.05, 2.1; = .03) after adjusting for age and breast density. The GTC had an inverse association with lobular involution; women with no, mild, or moderate involution had greater odds (odds ratios of 4.9 [95% CI: 1.5, 16.6], 2.6 [95% CI: 0.95, 7.2], and 1.8 [95% CI: 0.7, 4.6], respectively) of a moderate or marked GTC than those with complete involution ( = .004). Conclusion The glandular tissue component was independently associated with the future breast cancer risk in women with dense breasts and reflects the lobular involution. It should be considered for risk stratification during screening breast US. © RSNA, 2021

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2021210367DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
lobular involution
20
cancer risk
16
dense breasts
16
screening breast
16
breast
14
glandular tissue
12
tissue component
12
mild moderate
12
moderate marked
12

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF