Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied. Here, we used confocal imaging and whole-cell patch clamp electrophysiology in primary hippocampal neurons to study how AIS protein composition and neuronal firing varied in response to selected kinase inhibitors targeting the AKT/GSK3 pathway, which has previously been shown to phosphorylate AIS proteins. Image-based features representing the cellular pattern distribution of the voltage-gated Na+ (Nav) channel, ankyrin G, βIV spectrin, and the cell-adhesion molecule neurofascin were analyzed, revealing βIV spectrin as the most sensitive AIS protein to AKT/GSK3 pathway inhibition. Within this pathway, inhibition of AKT by triciribine has the greatest effect on βIV spectrin localization to the AIS and its subcellular distribution within neurons, a phenotype that Support Vector Machine classification was able to accurately distinguish from control. Treatment with triciribine also resulted in increased excitability in primary hippocampal neurons. Thus, perturbations to signaling mechanisms within the AKT pathway contribute to changes in βIV spectrin distribution and neuronal firing that may be associated with neuropsychiatric and neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278006PMC
http://dx.doi.org/10.3389/fnmol.2021.643860DOI Listing

Publication Analysis

Top Keywords

βiv spectrin
20
ais protein
16
neuronal firing
12
inhibition akt
8
spectrin distribution
8
ais
8
protein composition
8
neuropsychiatric neurodegenerative
8
neurodegenerative disorders
8
primary hippocampal
8

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.

View Article and Find Full Text PDF

A correlation-based tool for quantifying membrane periodic skeleton associated periodicity.

Front Neuroinform

August 2025

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Introduction: The advent of super-resolution microscopy revealed the membrane-associated periodic skeleton (MPS), a specialized neuronal cytoskeletal structure composed of actin rings spaced 190 nm apart by two spectrin dimers. While numerous ion channels, cell adhesion molecules, and signaling proteins have been shown to associate with the MPS, tools for accurate and unbiased quantification of their periodic localization remain scarce.

Methods: We developed Napari-WaveBreaker (https://github.

View Article and Find Full Text PDF

Aims: The current therapeutic approach to ischaemic (IsHF) and non-ischaemic (NIsHF) heart failure (HF) mainly overlooks the underlying aetiology owing to a lack knowledge of the differential molecular pathways that contribute to HF with reduced ejection fraction (HFrEF). Alterations in myocardial DNA methylation levels have been identified as potential biomarkers for HF irrespective of its aetiology. Due to the limited availability of cardiac tissues in clinics, our goal is to determine if DNA methylation changes in circulating CD4 T lymphocytes, which are strongly involved in left ventricle remodelling, can help in differentiating IsHF and NIsHF causes among patients with HFrEF and if DNA methylation levels associate with key clinical features.

View Article and Find Full Text PDF