Introduction: Network hyperexcitability (NH) is observed in patients with early-stage Alzheimer's disease (AD), emerging decades before cognitive decline. A key molecular determinant of NH is voltage-gated Na+ channel 1.6 (Nav1.
View Article and Find Full Text PDFNociception involves complex signaling, yet intrinsic mechanisms bidirectionally regulating this process remain unexplored. Here, we show that the fibroblast growth factor 13 (FGF13)/Nav1.7 protein-protein interaction (PPI) complex bidirectionally modulates nociception, and that the FGF13/Nav1.
View Article and Find Full Text PDFSchizophrenia (SCZ) is a complex psychiatric disorder with unclear biological mechanisms. Spectrins, cytoskeletal proteins linked to neurodevelopmental disorders, are regulated by the AKT/GSK3 pathway, which is implicated in SCZ. However, the impact of SCZ-related dysregulation of this pathway on spectrin expression and distribution remains unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
J Hazard Mater
March 2025
Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring.
View Article and Find Full Text PDFIn humans, frustrating experiences are known to trigger relapse events and individuals with higher frustration intolerance show increased risk of developing substance use disorders (SUDs). Despite this clear relationship, frustration-related behavior is seldom studied concurrently with self-administration behavior in rodent models. A major obstacle has been the lack of robust, quantitative assays of frustration-related operant behavior thus far.
View Article and Find Full Text PDFJ Neuroinflammation
December 2023
Background: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes.
View Article and Find Full Text PDFCocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh).
View Article and Find Full Text PDFIn neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Na channels with while impacting intrinsic excitability.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) have been employed very successfully to identify molecular and cellular features of psychiatric disorders that would be impossible to discover in traditional postmortem studies. Despite the wealth of new available information though, there is still a critical need to establish quantifiable and accessible molecular markers that can be used to reveal the biological causality of the disease. In this paper, we introduce a new quantitative framework based on supervised learning to investigate structural alterations in the neuronal cytoskeleton of hiPSCs of schizophrenia (SCZ) patients.
View Article and Find Full Text PDFFrustrative nonreward (FN) is a construct in the Negative Valence Systems domain of the Research Domain Criteria (RDoC) from the National Institute of Mental Health. An organism's response to frustrating situations (e.g.
View Article and Find Full Text PDFThe axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied.
View Article and Find Full Text PDFNeuropsychopharmacology
February 2021
Human-induced pluripotent stem cells (hiPSCs) allow for the establishment of brain cellular models of psychiatric disorders that account for a patient's genetic background. Here, we conducted an RNA-sequencing profiling study of hiPSC-derived cell lines from schizophrenia (SCZ) subjects, most of which are from a multiplex family, from the population isolate of the Central Valley of Costa Rica. hiPSCs, neural precursor cells, and cortical neurons derived from six healthy controls and seven SCZ subjects were generated using standard methodology.
View Article and Find Full Text PDFThe axon initial segment (AIS) is the first 20- to 60-μm segment of the axon proximal to the soma of a neuron. This highly specialized subcellular domain is the initiation site of the action potential and contains a high concentration of voltage-gated ion channels held in place by a complex nexus of scaffolding and regulatory proteins that ensure proper electrical activity of the neuron. Studies have shown that dysfunction of many AIS channels and scaffolding proteins occurs in a variety of neuropsychiatric and neurodegenerative diseases, raising the need to develop accurate methods for visualization and quantification of the AIS and its protein content in models of normal and disease conditions.
View Article and Find Full Text PDFFibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the model may provide a valuable tool to interrogate pathways related to disease mechanisms.
View Article and Find Full Text PDFFront Cell Neurosci
April 2017
The finely tuned regulation of neuronal firing relies on the integrity of ion channel macromolecular complexes. Minimal disturbances of these tightly regulated networks can lead to persistent maladaptive plasticity of brain circuitry. The intracellular fibroblast growth factor 14 (FGF14) belongs to the nexus of proteins interacting with voltage-gated Na+ (Na) channels at the axonal initial segment.
View Article and Find Full Text PDF