98%
921
2 minutes
20
As one of the most abundant, multifunctional biological polymers, polysaccharides are considered promising materials to prepare tissue engineering scaffolds. When properly designed, wetted porous scaffolds can have biomechanics similar to living tissue and provide suitable fluid transport, both of which are key features for in vitro and in vivo tissue growth. They can further mimic the components and function of glycosaminoglycans found in the extracellular matrix of tissues. In this study, we investigate scaffolds formed by charge complexation between anionic carboxymethyl cellulose and cationic protonated chitosan under well-controlled conditions. Freeze-drying and dehydrothermal heat treatment were then used to obtain porous materials with exceptional, unprecendent mechanical properties and dimensional long-term stability in cell growth media. We investigated how complexation conditions, charge ratio, and heat treatment significantly influence the resulting fluid uptake and biomechanics. Surprisingly, materials with high compressive strength, high elastic modulus, and significant shape recovery are obtained under certain conditions. We address this mostly to a balanced charge ratio and the formation of covalent amide bonds between the polymers without the use of additional cross-linkers. The scaffolds promoted clustered cell adhesion and showed no cytotoxic effects as assessed by cell viability assay and live/dead staining with human adipose tissue-derived mesenchymal stem cells. We suggest that similar scaffolds or biomaterials comprising other polysaccharides have a large potential for cartilage tissue engineering and that elucidating the reason for the observed peculiar biomechanics can stimulate further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396805 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.1c00534 | DOI Listing |
Nature
September 2025
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.
ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.
View Article and Find Full Text PDFInorg Chem
September 2025
General Education Center, Qinghai Institute of Technology, Xining 810000, China.
Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.
View Article and Find Full Text PDFJ Prosthet Dent
September 2025
Full Professor, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia. Electronic address:
Statement Of Problem: Although custom temporomandibular joint (TMJ) prostheses manufactured via computer-aided design and manufacturing (CAD-CAM) and produced through 3-dimensional (3D) printing or computer numerical control (CNC) allow for sagittal curvature adjustments in the glenoid fossa, their design remains unregulated by the Food and Drug Administration. Consequently, the geometry is determined largely by the engineer's discretion, with limited biomechanical evidence to guide these decisions. The lack of validation regarding how sagittal curvature influences joint stress distribution under various anatomical and functional conditions represents a gap in current knowledge that warrants investigation.
View Article and Find Full Text PDFSci Justice
September 2025
Department of Police Administration, Daegu University, PO Box 38453, Daegu, South Korea; Department of Policing & Security, Rabdan Academy, PO Box 114646, Abu Dhabi, United Arab Emirates. Electronic address:
Latent fingermark recovery from beverage containers is an important aspect of forensic investigations, yet the influence of substrate properties and beverage temperatures on fingermark development remains understudied. This exploratory study assessed the development and quality of latent fingermarks on disposable beverage cups made of nonporous plastic and semiporous paper using cyanoacrylate (CA) fuming, under conditions approximating a typical café environment. A total of 255 cups (107 plastic, 148 paper) were collected after participants consumed hot and iced beverages in a controlled classroom setting.
View Article and Find Full Text PDF