Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The abnormal deposition of the extracellular amyloid-β peptide is the typical pathological hallmark of Alzheimer's disease. Strategies to reduce the amyloid-β deposition effectively alleviate the neuronal degeneration and cognitive deficits of Alzheimer's disease. Danggui-Shaoyao-San has been considered a useful therapeutic agent known for the treatment of Alzheimer's disease. However, the mechanism of Danggui-Shaoyao-San for the treatment of Alzheimer's disease remains unclear. We investigated Danggui-Shaoyao-San's effect on amyloidosis and neuronal degeneration in an APP/PS1 mouse model. We found Danggui-Shaoyao-San alleviated the cognitive deficits in APP/PS1 mice. Additionally, Danggui-Shaoyao-San ameliorated the neuronal degeneration in these mice. Danggui-Shaoyao-San reduced the amyloidosis and amyloid-β deposition in APP/PS1 mouse brain and down-regulated the receptor for advanced glycation end products, and up-regulated the level of low-density lipoprotein receptor-related protein-1. However, the protein expression of the β-amyloid precursor protein, β-Secretase and presenilin-1 (PS1) in the amyloid-β production pathway, and the expression of neprilysin and insulin-degrading enzyme in the amyloid-β degradation pathway were not altered. Our findings collectively suggest that Danggui-Shaoyao-San could ameliorate the amyloidosis and neuronal degeneration of Alzheimer's disease, which may be associated with its up-regulation lipoprotein receptor-related protein-1 and down-regulation of the receptor for advanced glycation end products.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.jin2002025DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
24
neuronal degeneration
20
treatment alzheimer's
12
amyloid-β deposition
8
cognitive deficits
8
amyloidosis neuronal
8
app/ps1 mouse
8
receptor advanced
8
advanced glycation
8
glycation products
8

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Clinical Alzheimer's disease is currently characterized by cerebral β-amyloidosis associated with cognitive impairment. However, most cases of Alzheimer's disease are associated with multiple neuropathologies at autopsy. The peripheral protein changes associated with these disease endophenotypes are poorly understood.

View Article and Find Full Text PDF

Aging is a major risk factor for various neurological disorders, including Alzheimer's disease, and is associated with the accumulation of senescent cells, which can themselves propagate the senescence process through paracrine signaling. Migrasomes are organelles that form during cellular migration, detach from parent cells and mediate intercellular communication. Here we demonstrate that border-associated macrophages (BAMs) acquire senescence-associated properties during early brain aging, possibly due to prolonged exposure to amyloid beta.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a shared hallmark of neurodegenerative disorders, including Alzheimer's disease (AD) and tauopathies among others. Pathological alterations of the microtubule-associated protein Tau can disrupt mitochondrial dynamics, transport, and function, ultimately leading to neuronal toxicity and synaptic deficits. Understanding these processes is crucial for developing therapeutic interventions.

View Article and Find Full Text PDF