98%
921
2 minutes
20
In recent years, real-time observations of molecules have been required to understand their behavior and function. To date, we have reported two different time-resolved observation methods: diffracted x-ray tracking and diffracted x-ray blinking (DXB). The former monitors the motion of diffracted spots derived from nanocrystals labeled onto target molecules, and the latter measures the fluctuation of the diffraction intensity that is highly correlated with the target molecular motion. However, these reports use a synchrotron x-ray source because of its high average flux, resulting in a high time resolution. Here, we used a laboratory x-ray source and DXB to measure the internal molecular dynamics of three different systems. The samples studied were bovine serum albumin (BSA) pinned onto a substrate, antifreeze protein (AFP) crystallized as a single crystal, and poly{2-(perfluorooctyl)ethyl acrylate} (PCFA) polymer between polyimide sheets. It was found that not only BSA but also AFP and PCFA molecules move in the systems. In addition, the molecular motion of AFP molecules was observed to increase with decreasing temperature. The rotational diffusion coefficients (D) of BSA, AFP, and PCFA were estimated to be 0.73 pm/s, 0.65 pm/s, and 3.29 pm/s, respectively. Surprisingly, the D of the PCFA polymer was found to be the highest among the three samples. This is the first report that measures the molecular motion of a single protein crystal and polymer by using DXB with a laboratory x-ray source. This technique can be applied to any kind of crystal and crystalline polymer and provides atomic-order molecular information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270646 | PMC |
http://dx.doi.org/10.1063/4.0000112 | DOI Listing |
J Agric Food Chem
September 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Protoporphyrinogen oxidase (PPO, EC 1.3.3.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Okayama University, Department of Physics, Okayama 700-8530, Japan.
The doped topological insulator Cu_{x}Bi_{2}Se_{3} has attracted considerable attention as a new platform for studying novel properties of spin-triplet and topological superconductivity. In this work, we performed synchrotron x-ray diffraction measurements on Cu_{x}Bi_{2}Se_{3} (0.24≤x≤0.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri.
The sarcomeric protein cardiac myosin binding protein-C (cMyBP-C) binds myosin on thick filaments and regulates cardiac myocyte contraction. Our lab has reported that permeabilized cardiac myocytes lacking cMyBP-C generate greater power and show disproportionately fast sarcomere shortening velocities at high loads. Also, high resolution X-ray diffraction of cardiac trabeculae found that myosin cross-bridges in the cMyBP-C zone are the most active during loaded contractions.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.
View Article and Find Full Text PDF