98%
921
2 minutes
20
An effective solution to global human zinc (Zn) deficiency is Zn biofortification of staple food crops, which has been hindered by the low available Zn in calcareous soils worldwide. Many culturable soil microbes have been reported to increase Zn availability in the laboratory, while the status of these microbes in fields and whether there are unculturable Zn-mobilizing microbes remain unexplored. Here, we use the culture-independent metagenomic sequencing to investigate the rhizosphere microbiome of three high-Zn (HZn) and three low-Zn (LZn) wheat cultivars in a field experiment with calcareous soils. The average grain Zn concentration of HZn was higher than the Zn biofortification target 40 mg kg, while that of LZn was lower than 40 mg kg. Metagenomic sequencing and analysis showed large microbiome difference between wheat rhizosphere and bulk soil but small difference between HZn and LZn. Most of the rhizosphere-enriched microbes in HZn and LZn were in common, including many of the previously reported soil Zn-mobilizing microbes. Notably, 30 of the 32 rhizosphere-enriched species exhibiting different abundances between HZn and LZn possess the functional genes involved in soil Zn mobilization, especially the synthesis and exudation of organic acids and siderophores. Most of the abundant potential Zn-mobilizing species were positively correlated with grain Zn concentration and formed a module with strong interspecies relations in the co-occurrence network of abundant rhizosphere-enriched microbes. The potential Zn-mobilizing species, especially and , may contribute to the cultivars' variation in grain Zn concentration, and they deserve further investigation in future studies on Zn biofortification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261137 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.689855 | DOI Listing |
BMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. Electronic address:
Silica-binding peptides (SBPs) are versatile tools for functionalizing silica surfaces in biotechnology, yet the mechanisms underlying their adsorption remain poorly understood. Here, we develop a predictive molecular theory that integrates peptide structure, electrostatic and short-range interactions, and charge regulation effects to model SBP adsorption onto silica. This coarse-grained approach effectively captures the dependence of adsorption on pH, salt concentration, and peptide concentration.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China. Electronic address:
Rice is a staple food for a large portion of the global population, while it is often associated with a high glycemic index. In this study, rice grains were for the first time dually treated with various concentrations of malic acid and different ultrasound durations to reduce starch digestibility. Results showed that a wide range of digestibility (up to ~30 % difference in the amount of starch digested after 120 min) reached after the treatments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Here, Pb/Y codoped SnSe nanorods were fabricated via a bottom-up, cost-effective hydrothermal method. The formation of nanorod structures generating high-density grain boundaries significantly enhances phonon scattering, serving as the primary mechanism for lattice thermal conductivity reduction. Furthermore, Y-element enrichment regions, nanoprecipitates, and dense dislocation networks provide additional phonon scattering that further suppresses phonon transport.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Laboratorio de Biotecnología Microbiana, Universidad Nacional de Frontera, 20100, Sullana, Piura, Perú.
Peru is the eighth largest producer of cocoa beans worldwide; however, the high cadmium content (Cd) presented in the white Criollo cocoa beans from the Piura region, has limited their commercialization. A potential strategy to mitigate this problem is the application of native lactic acid bacteria (LAB), capable of reducing Cd during the fermentation stage of the grain. Three Theobroma cacao L.
View Article and Find Full Text PDF