Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Correction for 'Anti-osteosarcoma effect of hydroxyapatite nanoparticles both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway' by Renxian Wang et al., Biomater. Sci., 2020, 8, 4426-4437, DOI: 10.1039/D0BM00898B.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1bm90066hDOI Listing

Publication Analysis

Top Keywords

hydroxyapatite nanoparticles
8
downregulating fak/pi3k/akt
8
fak/pi3k/akt signaling
8
correction anti-osteosarcoma
4
anti-osteosarcoma hydroxyapatite
4
nanoparticles downregulating
4
signaling pathway
4
pathway correction
4
correction 'anti-osteosarcoma
4
'anti-osteosarcoma hydroxyapatite
4

Similar Publications

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

This study focuses on tripartite synthesis of Silver (AgNPs), Mesoporous Silica (MSNs), and Hydroxyapatite (n-HAp) nanoparticles with aqueous extract of Cissus quadrangularis (Veldt grape plant; Indian name: Pirandai) as a reducing agent. The dried and powdered form of the plant was subjected to aqueous extraction. The phytochemicals analysis was qualitatively estimated which detected the presence of alkaloid, tannin, phenol, terpenoid, steroid and saponin.

View Article and Find Full Text PDF

Multifunctional PAMAM nanoparticles with sequential antimicrobial-remineralization therapy for dentin caries management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)I-NH (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention.

View Article and Find Full Text PDF

Objectives: To investigate the physicochemical properties, in vitro efficacy, and in vivo therapeutic potential of novel tree turmeric root and nano-hydroxyapatite (TRE@NHA) composites in mitigating chemotherapy-induced peripheral neuropathy (CIPN).

Materials And Methods: TRE@NHA composites were synthesized and characterized using FTIR, XRD, TGA, and HRTEM. In vitro studies using PC12 cells assessed cytotoxicity, anti-inflammatory effects, and neuroprotective properties.

View Article and Find Full Text PDF

Neodymium (Nd³⁺) doped hydroxyapatite nanoparticles (Han: Nd³⁺ NPs) were synthesized and systematically characterized to evaluate their structural and functional properties for biomedical applications. X-ray diffraction (XRD) confirmed the crystalline phase retention post-doping, while x-ray photoelectron spectroscopy (XPS) revealed the successful incorporation of Nd³⁺ ions. The doping altered the optical and electronic properties, potentially enhancing bioactivity and imaging capabilities.

View Article and Find Full Text PDF