98%
921
2 minutes
20
Background And Purpose: Cerebral visual impairment (CVI) is an underdiagnosed condition in children, and its assessment tools have focused on older children. We aimed to develop a parental questionnaire for cerebral visual impairment (PQCVI) for screening CVI in young children.
Methods: The PQCVI comprised 23 questions based on a modified version of Houliston and Dutton's questionnaire for older children. The PQCVI with neurocognitive function tests was applied to 201 child-parent pairs with typically developing children younger than 72 months (age 32.4±20.1 months, mean±standard deviation). The children were classified into six age groups. The normative data, cutoff scores, and internal reliability were assessed and item analysis was performed. We referred to the total score for all questions as the cerebral visual function (CVF) score.
Results: The normative data showed that the CVF score and the scores corresponding to ventral-stream and dorsal-stream visual functions plausibly increased with age. The scores rapidly reached 90% of their maximum values up to the age of 36 months, after which they increased slowly. Cronbach's alpha for all questions across all age groups was 0.97, showing excellent consistency. The item difficulty and item discrimination coefficients showed that the questions were generally adequate for this age stage.
Conclusions: The PQCVI items produced reliable responses in children younger than 72 months. The rapid increase in scores before the age of 3 years supports the importance of early identification of CVI. Following additional clinical verification, the PQCVI may be useful for CVI screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242312 | PMC |
http://dx.doi.org/10.3988/jcn.2021.17.3.354 | DOI Listing |
Hum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFNeurotrauma Rep
August 2025
Department of Radiology, Weill Cornell Medicine; New York, New York, USA.
Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.
View Article and Find Full Text PDFFront Neurol
August 2025
Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.
View Article and Find Full Text PDFFront Microbiol
August 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Background: Increasing evidence suggests a potential role of the gut microbiota in Parkinson's disease (PD). However, the relationship between the gut microbiome (GM) and PD dementia (PDD) remains debated, with their causal effects and underlying mechanisms not yet fully understood.
Methods: Utilizing data from large-scale genome-wide association studies (GWASs), this study applied bidirectional and mediating Mendelian randomization (MR) to investigate the causal relationship and underlying mechanisms between the GM and PDD.
Front Sports Act Living
August 2025
Faculty of Physical Education, China West Normal University, Nanchong, China.
Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.
View Article and Find Full Text PDF