98%
921
2 minutes
20
The positron emission tomography (PET) radioligand [C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [C]UCB-J PET can visualise synaptic loss in mouse models of these disorders. Such models are essential for understanding disease pathology and for evaluating the effects of novel disease-modifying drug candidates. In the present study, synaptic density in transgenic models of AD (ArcSwe) and PD (L61) was studied using [C]UCB-J PET. Data were acquired during 60 min after injection, and time-activity curves (TACs) in different brain regions and the left ventricle of the heart were generated based on the dynamic PET images. The [C]UCB-J brain concentrations were expressed as standardised uptake value (SUV) over time. The area under the SUV curve (AUC), the ratio of AUC in the brain to that in the heart (AUC), and the volume of distribution (V) obtained by kinetic modelling using the heart TAC as input were compared between transgenic and age-matched wild type (WT) mice. The L61 mice displayed 11-13% lower AUC ratio and brain V generated by kinetic modeling compared to the control WT mice. In general, also transgenic ArcSwe mice tended to show lower [C]UCB-J brain exposure than age-matched WT controls, but variation within the different animal groups was high. Older WT mice (18-20 months) showed lower [C]UCB-J brain exposure than younger WT mice (8-9 months). Together, these data imply that [C]UCB-J PET reflects synaptic density in mouse models of neurodegeneration and that inter-subject variation is large. In addition, the study suggested that model-independent AUC ratio can be used to evaluate [C]UCB-J binding as an alternative to full pharmacokinetic modelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118302 | DOI Listing |
ACS Nano
September 2025
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University;
Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, Republic of Korea.
Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 200011 Shanghai, China.
Preeclampsia (PE) is a serious complication of pregnancy characterized by chronic inflammation and immune dysregulation, which significantly increases the risk of neurodevelopmental disorders in offspring, including the autism spectrum disorder (ASD). This review investigated the potential mechanisms linking PE to ASD, with a particular focus on the role of microglial abnormalities. Epidemiological studies have revealed that prenatal exposure to PE raised the risk of ASD, with affected offspring showing increased odds ratios.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Synaptic plasticity is fundamental for cognitive development and brain function. Aluminium nanoparticles (AlNPs), widely used in industrial and consumer products, pose potential neurotoxic risks, particularly during early neurodevelopment. However, their effects on synaptic plasticity and cognitive outcomes remain poorly understood.
View Article and Find Full Text PDF