98%
921
2 minutes
20
Although eye tracking has been used extensively to assess cognitions for static stimuli, recent research suggests that the link between gaze and cognition may be more tenuous for dynamic stimuli such as videos. Part of the difficulty in convincingly linking gaze with cognition is that in dynamic stimuli, gaze position is strongly influenced by exogenous cues such as object motion. However, tests of the gaze-cognition link in dynamic stimuli have been done on only a limited range of stimuli often characterized by highly organized motion. Also, analyses of cognitive contrasts between participants have been mostly been limited to categorical contrasts among small numbers of participants that may have limited the power to observe more subtle influences. We, therefore, tested for cognitive influences on gaze for screen-captured instructional videos, the contents of which participants were tested on. Between-participant scanpath similarity predicted between-participant similarity in responses on test questions, but with imperfect consistency across videos. We also observed that basic gaze parameters and measures of attention to centers of interest only inconsistently predicted learning, and that correlations between gaze and centers of interest defined by other-participant gaze and cursor movement did not predict learning. It, therefore, appears that the search for eye movement indices of cognition during dynamic naturalistic stimuli may be fruitful, but we also agree that the tyranny of dynamic stimuli is real, and that links between eye movements and cognition are highly dependent on task and stimulus properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cogs.12984 | DOI Listing |
Adv Drug Deliv Rev
September 2025
State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing 210002, China; Jiangsu Provincial Key Laboratory of Nano Technology, Medical School, Nanjing University,
Oxygen plays a critical regulatory role in tissue repair and regeneration. However, in the microenvironment of tissues with vascular damage, hypoxia is commonly present. This not only suppresses cell proliferation and differentiation but also delays angiogenesis and extracellular matrix reconstruction, ultimately hindering the tissue regeneration process.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine. Electronic address:
Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.
View Article and Find Full Text PDFSeizure
August 2025
Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Postgraduation Programme in Clinical Medicine, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Vilnius University, Faculty of Medicine, Institute of Clinical Medicine, Clinic of Neurology and Neurosurgery, Lithuania.
Purpose: Reflex epilepsies are epileptic disorders in which seizures are consistently provoked by specific, identifiable stimuli-typically sensory or cognitive. In patients with memory-induced seizures, it has long been debated whether the memory acts as the trigger for the seizure or represents its first clinical manifestation.
Methods: We present the case of a 25-year-old woman with reflex seizures triggered by the recollection of specific autobiographical memories.
Cell Rep
September 2025
Institut Curie, UMR3348, CNRS, Université Paris-Saclay, 91401 Orsay, France. Electronic address:
Alternative splicing enables cells to acquire novel phenotypic traits for adaptation to changes in the environment. However, the mechanisms that allow these dynamic changes to occur in a timely and sustained manner remain unknown. Recent investigations unveiled a new regulatory layer important for splicing dynamics and memory: the chromatin.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
Self-regulating hydrogels represent the next generation in the development of soft materials with active, adaptive, autonomous, and intelligent behavior inspired by sophisticated biological systems. Nature provides exemplary demonstrations of such self-regulating behaviors, including muscle tissue's precise biochemical and mechanical feedback mechanisms, and coordinated cellular chemotaxis driven by dynamic biochemical signaling. Building upon these natural examples, self-regulating hydrogels are capable of spontaneously modulating their structural and functional states through integrated negative feedback loops.
View Article and Find Full Text PDF