98%
921
2 minutes
20
GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gα and Gα heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-ΚB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-ΚB activity. In particular, the potency of compound 187 was significantly superior to that of preexisting compounds . However, in the colitis model , compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724840 | PMC |
http://dx.doi.org/10.4062/biomolther.2021.078 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Dysregulated transcription factors critically link chronic inflammation to oncogenesis in colitis-associated colorectal cancer (CAC), but their mechanistic roles remain incompletely understood. By integrating microarray and transcriptome sequencing data from ulcerative colitis (UC), colitis-associated cancer (CAC), and colorectal cancer (CRC) patients, we identify C/EBPβ as a key transcriptional regulator whose elevated expression inversely correlates with survival. In azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CAC models, intestinal epithelial C/EBPβ is upregulated during tumor progression, which is correlated with exacerbated tumor burden and neutrophil infiltration.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Flammulina velutipes is a major edible fungus with abundant yield and mature industrial production technology. Its main functional component, Flammulina velutipes polysaccharide, has huge development and utilization value. In light of the current uncertainty regarding the mechanisms by which Flammulina velutipes polysaccharides prevent colonic cell pyroptosis, the mechanisms of ultrasound-extracted Flammulina velutipes polysaccharide (FVPU2) in inhibiting colonic cell pyroptosis in mice were investigated, and compared with Flammulina velutipes polysaccharide extracted via hot water extraction (FVPH2).
View Article and Find Full Text PDFFood Res Int
November 2025
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:
Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.
View Article and Find Full Text PDFGut Microbes
December 2025
Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China.
Genetic predisposition and environmental factors, including psychological stress, play prominent roles in driving the development and progression of colorectal neoplasms. However, the mechanisms through which chronic stress drives the progression of colorectal neoplasm remain unclear. The gut microbiota is closely linked to chronic psychological stress (chronic stress) and colorectal neoplasms.
View Article and Find Full Text PDFNat Immunol
September 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
Crohn's disease pathology is modeled in TNF mice that overproduce tumor necrosis factor (TNF) to drive disease through TNF receptors. An alternative ligand for TNF receptors, soluble LTα, is produced by B cells, but has received scarce attention because LTα also partners with LTβ to generate membrane-tethered LTαβ that promotes tertiary lymphoid tissue-another feature of Crohn's disease. We hypothesized that B cell-derived LTαβ would critically affect ileitis in TNF mice.
View Article and Find Full Text PDF