98%
921
2 minutes
20
Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyzing image-like data including many-body snapshots from quantum simulators. Recently, they have successfully distinguished between simulated snapshots that are indistinguishable from one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from such approaches. Here, we develop a set of nonlinearities for use in a neural network architecture that discovers features in the data which are directly interpretable in terms of physical observables. Applied to simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, we uncover that the key distinguishing features are fourth-order spin-charge correlators. Our approach lends itself well to the construction of simple, versatile, end-to-end interpretable architectures, thus paving the way for new physical insights from machine learning studies of experimental and numerical data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222395 | PMC |
http://dx.doi.org/10.1038/s41467-021-23952-w | DOI Listing |
J Phys Condens Matter
September 2025
Chinese Academy of Sciences, Institute of Physics, P.O. Box 603, Beijing, 100190, CHINA.
This study investigates the magnetoelectric (ME) effect of z-type DyCrO4 and the converse magnetoelectric (CME) effect of s-type DyCrO4 by using electron spin resonance (ESR). The peak-to-peak linewidths (ΔHpp), g-values, and double integral intensities (I) were calculated from the ESR spectra to investigate the coupling behaviors. The ME coupling effect was observed at 135 K in the z-type DyCrO4 powder, evidenced by an anomaly in the temperature dependence of the intensity or g value extracted from ESR.
View Article and Find Full Text PDFNanoscale
September 2025
St. Petersburg State University, 199034 St. Petersburg, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.
Superconductivity and magnetism are two of the most extensively studied ordered systems in condensed matter physics. Recent advancements in the fabrication of van der Waals (vdW) layered materials have significantly advanced the exploration of both fundamental physics and practical applications within their heterostructures. The focus not only lies on the coexisting mechanism between superconductivity and magnetism, but also highlights the potential of these atomically thin layers to serve as crucial components in future superconducting circuits.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Temple University, Barton Hall, Philadelphia, PA 19122-6082, USA, Philadelphiaa, Pennsylvania, 19122, UNITED STATES.
We examine the magnetic excitations of an Anderson lattice model with a Vshaped pseudogap arising from nodal hybridization. The model produces a V-shaped pseudogap in the electronic density of states near the Fermi energy. It lies close to an antiferromagnetic quantum critical point and features lowdimensional Fermi surfaces, aligning with experimental observations of CeNiSn.
View Article and Find Full Text PDF