Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To identify the viruses in tree peony plants associated with the symptoms of yellowing, leaf rolling, stunted growth, and decline, high-throughput sequencing of small RNA and mRNA was conducted from a single symptomatic plant. Bioinformatic analyses and reconstruction of viral genomes indicated mixed viral infections involving cycas necrotic stunt virus, apple stem grooving virus, lychnis mottle virus, grapevine line pattern virus, and three new viruses designated as peony yellowing-associated citrivirus (PYaCV, in ), peony betaflexivirus 1 (PeV1, unclassified in ), and peony leafroll-associated virus (PLRaV, in ). PYaCV was 8,666 nucleotides (nt) in length, comprising three open reading frames (ORFs), and shared 63.8 to 75.9% nt sequence identity with citrus leaf blotch virus (CLBV) isolates. However, the ORF encoding the replication-associated protein (REP) shared 57 and 52% sequence identities at the nt and amino acid (aa) level, respectively, with other reported CLBV isolates, which were below the criterion for species classification within the family . Recombination analysis identified putative recombination sites in PYaCV, which originated from CLBV. PeV1, only identified from the transcriptome data, was 8,124 nt in length, with five ORFs encoding the REP (ORF1), triple gene block (ORF2 to 4) and coat protein (CP, ORF5). Phylogenetic analysis and sequence comparison showed that PeV1 clustered with an unassigned member, the garlic yellow mosaic-associated virus within the family, into a separate clade. Partial genome sequence analysis of PLRaV (12,545 nt) showed it contained seven ORFs encoding the partial polyprotein 1a, the RNA-dependent RNA polymerase (RdRp), two small hydrophobic proteins p11 and p6, HSP70h, p55, and a CP duplicate, which shared low aa sequence identity with family members. Phylogenetic analysis based on the aa sequences of RdRp or HSP70h indicated that PLRaV clustered with grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-13 in the genus. Field investigation confirmed the wide distribution of these viruses, causing mixed infections of peony plants in Beijing.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-01-21-0007-REDOI Listing

Publication Analysis

Top Keywords

small rna
8
mixed infections
8
peony plants
8
virus
8
leafroll-associated virus
8
sequence identity
8
clbv isolates
8
orfs encoding
8
phylogenetic analysis
8
peony
6

Similar Publications

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF