Converting the 3-quinuclidinone reductase from Agrobacterium tumefaciens into the ethyl 4-chloroacetoacetate reductase by site-directed mutagenesis.

Biotechnol Appl Biochem

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, the 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) was modified by site-directed mutagenesis. And we further obtained a saturation mutant library in which the residue 197 was mutated. A single-point mutation converted the wild enzyme that originally had no catalytic activity in reduction of ethyl 4-chloroacetoacetate (COBE) into an enzyme with catalytic activity. The results of enzyme activity assays showed that the seven variants could asymmetrically reduce COBE to ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) with NADH as coenzyme. In the library, the variant E197N showed higher catalytic efficiency than others. The E197N was optimally active at pH 6.0 and 40°C, and the catalytic efficiency (k /K ) for COBE was 51.36 s ·mM . This study showed that the substrate specificity of AtQR could be changed through site-directed mutagenesis at the residue 197.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.2214DOI Listing

Publication Analysis

Top Keywords

site-directed mutagenesis
12
3-quinuclidinone reductase
8
reductase agrobacterium
8
agrobacterium tumefaciens
8
ethyl 4-chloroacetoacetate
8
residue 197
8
catalytic activity
8
catalytic efficiency
8
converting 3-quinuclidinone
4
tumefaciens ethyl
4

Similar Publications

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

-Adenosyl-l-methionine (SAM) is well-known as a methyl donor for methyltransferases but also functions as a 3-amino-3-carboxypropyl (3-ACP) donor for 3-ACP transferases. NAT is a 3-ACP transferase which accepts β-lactam antibiotic nocardicin G () and SAM to produce isonocardicin C. Due to the lack of structural information about this enzyme, its reaction mechanism has not been fully identified.

View Article and Find Full Text PDF

Mechanistic Characterisation of a Diterpene Synthase for Chryseojoostenes A-E from Chryseobacterium Joostei.

Angew Chem Int Ed Engl

September 2025

Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.

A diterpene synthase from Chryseobacterium joostei was characterised and produces the five unique compounds chryseojoostenes A-E. Chryseojoostenes D and E were produced in too low amounts for isolation from the wildtype enzyme, but extensive site-directed mutagenesis resulted in an enzyme variant in which the production of these compounds was enhanced. The biosynthesis of the enzyme products was investigated in detail through a combined experimental and computational approach, indicating a complex hydrogen scrambling during terpene cyclisation and a long-range proton shift towards chryseojoostene E.

View Article and Find Full Text PDF

The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.

View Article and Find Full Text PDF

Genome mining and characterization of a heme-dependent enzyme catalyzing intermolecular Nitrogen-Nitrogen bond formation in hydrazinosuccinic acid biosynthesis.

Synth Syst Biotechnol

December 2025

Department of Pharmacy of the Fourth Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Nitrogen-nitrogen (N-N) bond-forming enzymes are rare but play vital roles in both primary and secondary metabolism. Guided by a nitric oxide synthase (NOS)-based genome mining strategy, we report the discovery and characterization of a new heme-dependent enzyme system that catalyzes intermolecular N-N bond formation. Using both in vivo and in vitro reconstitution approaches, we demonstrated that a protein complex, comprising a heme enzyme and a 2[4Fe-4S] ferredoxin partner, mediates the coupling of the α-amine group of l-aspartate with inorganic nitrogen oxide species, such as nitrite or nitric oxide, to generate hydrazinosuccinic acid, a key biosynthetic precursor in several natural product pathways.

View Article and Find Full Text PDF