98%
921
2 minutes
20
Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2021.119083 | DOI Listing |
Therapeutic T-cell engineering from human hematopoietic stem cells (HSCs) focuses on recapitulating notch1-signaling and α4β1-integrin-mediated adhesion within the thymic niche with supportive stromal cell feeder-layers or surface-immobilized recombinant protein-based engineered thymic niches (ETNs). The relevant Notch1-DLL-4 and α4β1-integrin-VCAM-1 interactions are known to respond to mechanical forces that regulate their bond dissociation behaviors and downstream signal transduction, yet manipulating the mechanosensitive features of these key receptor-ligand interactions in thymopoiesis has been largely ignored in current ETN designs. Here, we demonstrate that human T-cell development from cord blood-derived CD34 HSCs is regulated via molecular cooperativity in notch1 and integrin-mediated mechanotransduction.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China.
Skin aging is commonly characterized by increased wrinkles, loss of elasticity, and hyperpigmentation, significantly affecting personal appearance and quality of life. Although botulinum toxin type A (BTX-A) has been widely applied in cosmetic anti-wrinkle treatments, its intrinsic cytotoxicity limits broader clinical applications. In this study, we developed a novel exosome-based BTX-A composite delivery system designed to synergize the anti-aging properties of exosomes with the wrinkle-reducing effects of BTX-A while reducing toxicity.
View Article and Find Full Text PDFTransl Vis Sci Technol
September 2025
Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
Purpose: To develop an in vitro model that mimics aspects of corneal healing in humans for uncovering key mechanisms involved in the mechanisms involved in the healing and scarring processes.
Methods: As part of the healing matrix, TGF-β1-induced and corneal-derived myofibroblasts were cultured in fibrin hydrogels with configurations that recapitulate the healthy (aligned) and wounded (random) microenvironment of the cornea.
Results: Evaluation of cellular alpha smooth muscle actin (α-SMA) and collagen hybridizing peptide (CHP) showed cell and matrix alignment, respectively.
Anim Nutr
September 2025
Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.
Parathyroid glands (PTG) are essential in maintaining mineral homeostasis, particularly in regulating blood calcium (Ca) and phosphorus (P) levels. The endocrine regulation via parathyroid hormone (PTH) is a prerequisite for the efficient utilization of dietary P. The PTG contain lobules of PTH-producing chief cells surrounded by extracellular collagen.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Arthropathy and Osteopathy, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan 512000, Guangdong, China.
Zinc-based biodegradable metal materials have garnered significant attention in recent years due to their favorable mechanical properties, biodegradability, and biocompatibility. Nonetheless, the clinical application of degradable metallic zinc is largely hindered by the uncontrolled release of Zn from the substrate. Herein, a hybrid zinc oxide-zinc sulfide (Zn@ZOS) film was constructed on Zn substrates using the hydrothermal method to slow down the release rate of Zn.
View Article and Find Full Text PDF