Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials.

Nanomicro Lett

School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.

Published: February 2019


Article Synopsis

  • Research on two-dimensional (2D) materials is booming due to their unique properties in areas like optics and magnetics, prompting the creation of heterostructures for new physical explorations.
  • Advances in synthesis techniques have led to the exceptional development of devices such as tunneling transistors and photodetectors based on 2D heterostructures.
  • The review summarizes the current state of 2D heterostructures, their applications, and the challenges and future directions for research in this field.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With a large number of researches being conducted on two-dimensional (2D) materials, their unique properties in optics, electrics, mechanics, and magnetics have attracted increasing attention. Accordingly, the idea of combining distinct functional 2D materials into heterostructures naturally emerged that provides unprecedented platforms for exploring new physics that are not accessible in a single 2D material or 3D heterostructures. Along with the rapid development of controllable, scalable, and programmed synthesis techniques of high-quality 2D heterostructures, various heterostructure devices with extraordinary performance have been designed and fabricated, including tunneling transistors, photodetectors, and spintronic devices. In this review, we present a summary of the latest progresses in fabrications, properties, and applications of different types of 2D heterostructures, followed by the discussions on present challenges and perspectives of further investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770868PMC
http://dx.doi.org/10.1007/s40820-019-0245-5DOI Listing

Publication Analysis

Top Keywords

heterostructures
5
progress fabrication
4
fabrication properties
4
properties devices
4
devices heterostructures
4
heterostructures based
4
based materials
4
materials large
4
large number
4
number researches
4

Similar Publications

Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.

View Article and Find Full Text PDF

Dynamic redistribution of intermediates induced by a local electric field microenvironment boosts efficient overall water electrolysis.

J Colloid Interface Sci

September 2025

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.

Reaction intermediates (RI) are key factors that directly determine the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a local electric field microenvironment was built in a FeNi and MoNi heterostructure (H-FeNiMo/NMF) to induce the redistribution of hydroxyls and protons on the metal sites during the OER and HER. H-FeNiMo/NMF requires only 270 and 155 mV to reach 100 mA cm in alkaline media for OER and HER, respectively.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

g-CN/BiO hetero-nanosheets as a superior electrocatalyst for nitrate reduction to ammonia.

Chem Commun (Camb)

September 2025

State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.

The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.

View Article and Find Full Text PDF

UVA/B-Selective Skin-Inspired Nociceptors Based on Green Double Perovskite QDs-Sensitized 2D Semiconductor toward Reliable Human Somatosensory System Simulation.

J Phys Chem Lett

September 2025

Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.

View Article and Find Full Text PDF