Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several classes of antibiotics have reduced the mortality caused by infectious diseases; however, orally administered antibiotics alter the composition of gut microbiota, leading to dysbiosis-related disease. Therefore, in this study, we used 16S rRNA gene sequencing- and metabolomics-based approaches to investigate the effects of oral vancomycin on gut bacterial microbiota and the metabolome in biospecimens collected from healthy men. Samples collected from 11 healthy men were analyzed using 16S rRNA gene sequencing and metabolomics. 16S rRNA gene sequencing was performed to analyze the gut bacterial microbiota, and GC-TOFMS-based untargeted metabolomics was performed to analyze fecal, urine, and plasma metabolomics. Spearman's rank correlation was utilized to explore the associations between gut bacterial microbiota and metabolome. Fecal 16S rRNA gene sequencing analysis showed decreased relative abundance of genera belonging to the phyla Bacteroidetes and Firmicutes, and increased relative abundance of genera of the phyla Proteobacteria and Fusobacteria. Fecal metabolomics analysis showed that levels of uracil, L-aspartic acid, lithocholic acid, and deoxycholic acid were significantly higher at baseline, whereas that of dihydrouracil was significantly higher after vancomycin administration. No significant metabolic markers were selected from urine and plasma metabolomics analysis. This study demonstrates that oral vancomycin administration induces alterations in gut bacterial microbiota and metabolome. Correlation analysis between our two datasets shows that alteration of the gut bacterial microbiota, induced by oral vancomycin, potentially affected the systemic activity of dihydropyrimidine dehydrogenase. This correlation should be further examined in future studies to define the effects of gut bacterial microbiota on drug-metabolizing enzymes, thereby contributing to the development of personalized therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190408PMC
http://dx.doi.org/10.3389/fcimb.2021.629438DOI Listing

Publication Analysis

Top Keywords

gut bacterial
28
bacterial microbiota
28
microbiota metabolome
16
16s rrna
16
rrna gene
16
healthy men
12
oral vancomycin
12
gene sequencing
12
gut
8
alterations gut
8

Similar Publications

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Effect of the interaction between Lactobacillus casei and hydrolyzed yeast on the sexual competitiveness, survival, and fecundity of Anastrepha obliqua (Diptera: Tephritidae).

Insect Sci

September 2025

El Colegio de la Frontera Sur. Departamento de Ecología de Insectos y Manejo de Plagas. Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas, México.

Enriching the diets of sterile fruit flies with bacterial species prior to their release has been shown to improve their survival and sexual competitiveness. However, most of the bacteria associated with fruit flies are enterobacteria, and some species have been classified as opportunistic pathogens. On the other hand, in diets that include hydrolyzed yeast, the effect of bacteria has been counterproductive, which could be due to the protein content in the diet being too high.

View Article and Find Full Text PDF

Diet regimes rich in fruits and vegetables have been adopted as effective strategies for the management of type 2 diabetes mellitus (T2DM). Here, we identified miR166e, a plant miRNA abundantly present in fruits and vegetables, as a functional agent that ameliorates T2DM in a mouse model. Orally administered miR166e oligomers passed through digestion, accumulated in the intestines at 14.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.

Methods: Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO).

View Article and Find Full Text PDF

Antibiotic growth promoters (AGPs) are increasingly subject to global regulatory restrictions and consumer pressure, driving the poultry industry toward antibiotic-free production systems. This shift has accelerated the search for effective alternatives, including innovative microbial additives, organic acids, phytogenics, and other bioactive compounds capable of supporting digestive function and enhancing immune competence in poultry. The present study reported the isolation and characterization of a novel Bacillus velezensis strain, BV-OLS1101, possessing robust probiotic attributes and a distinctive capacity to produce a serine protease subtilisin.

View Article and Find Full Text PDF