Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Clinical treatment of Osteosarcoma (OS) encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To address these issues, innovative multifunctional PLGA/Mg porous scaffolds were designed for comprehensive postsurgical management of OS. The PLGA/Mg composite scaffolds exhibited several unique features: (1) The multiple functions of Mg particles were explored for the first time to fulfill the requirement for postsurgical management of OS. The intact Mg particles exhibits excellent photothermal effect for tumor eradication, and the released Mg ions could subsequently promote bone regeneration, thus endowing the PLGA/Mg scaffolds dual functions of suppressing OS recurrence and repairing bone defect in a sequential way; (2) A low temperature rapid prototyping (LT-RP) 3D-printing technology was used to fabricate the scaffolds with biomimetic hierarchical porous structures, which could structurally promote bone regeneration; (3) The PLGA/Mg scaffolds have excellent biodegradability and biocompatibility, exhibiting great promise for clinical translation. Finally, the PLGA/Mg scaffolds achieved complete suppression of tumor recurrence in the presence of near-infrared laser irradiation, as well as efficient bone defect repair in vivo. Activation of the AKT and β-catenin pathways of osteoblast cells by PLGA/Mg scaffolds was identified, which might be the modulators to accelerate the ossification. The innovative PLGA/Mg scaffolds demonstrated excellent capabilities in postsurgical OS recurrence suppression and bone regeneration, providing a promising clinical strategy for comprehensive postsurgical management of OS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.120950 | DOI Listing |