98%
921
2 minutes
20
Background: Tuberculosis is a chronic infection caused by Mycobacterium tuberculosis (M.tb), which needs proper macrophage activation for control. It has been debated whether the co-infection with helminth will affect the immune response to mycobacterial infection.
Objective: To determine the effect of sequential co-infection of Heligmosomoides polygyrus (H.pg) nematodes and M.tb on T cell responses, macrophages polarization and lung histopathological changes.
Method: This study used 49 mice divided into 7 treatment groups, with different sequence of infection of M.tb via inhalation and H.pg via oral ingestion for 8 and 16 weeks. T cells response in the lung, intestine, and peripheral blood were determined by flow cytometry. Cytokines (IL-4, IFN-γ, TGB-β1, and IL-10) were measured in peripheral blood using ELISA. Lung macrophage polarization were determined by the expression of iNOS (M1) or Arginase 1 (M2). Mycobacterial count were done in lung tissue. Lung histopathology were measured using Dorman's semiquantitative score assessing peribronchiolitis, perivasculitis, alveolitis, and granuloma formation.
Result: M.tb infection induced Th1 response and M1 macrophage polarization, while H.pg infection induced Th2 and M2 polarization. In sequential co-infection, the final polarization of macrophage was dictated by the sequence of co-infection. However, all groups with M.tb infection showed the same degree of mycobacterial count in lung tissues and lung tissue histopathological changes.
Conclusion: Sequential co-infection of H.pg and M.tb induces different T cell response which leads to different macrophage polarization in lung tissue. Helminth infection induced M2 lung macrophage polarization, but did not cause different mycobacterial count nor lung histopathological changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijtb.2020.10.008 | DOI Listing |
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Biochemistry and Molecular Biology, Bengbu Medical University, Bengbu 233030, China.
Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.
Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.
Ren Fail
December 2025
Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
Objectives: In this study, we explored the mechanism by which DDIT4 influences the polarization phenotypic transformation of macrophages and inflammation through the regulation of mTOR signaling pathway, providing a new mechanism and target for the treatment of diabetic nephropathy.
Methods: The degree of inflammation and injury in renal tissues of diabetic kidney disease (DKD) animal model was evaluated using biochemical assays, renal pathology examinations, and Western blot tests. Podocytes and macrophages were isolated from renal tissues to observe the extent of podocyte injury and the quantity and polarization phenotype of macrophage infiltration.
ACS Appl Mater Interfaces
September 2025
Research Center for Nano-Biomaterial, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China. Electronic address:
Ethnopharmacological Relevance: Fever is a prevalent clinical symptom and is usually caused by inflammation or infection. Persistent high fever can lead to delirium, coma and convulsions, causing brain damage. Angong Niuhuang Pill (ANP), a traditional Chinese emergency medicine, has been employed in clinical practice for centuries, with well-documented antipyretic effects.
View Article and Find Full Text PDF