98%
921
2 minutes
20
A liquid-liquid extraction methodology was developed for the removal of Cr(VI) from contaminated water using a novel green hydrophobic deep eutectic solvent (DES) as an efficient sole extracting agent. The hydrophobic DES was obtained by mixing choline chloride and thymol in 1:4 molar ratio at 70°C for 10 min and was denoted as ChCl-THY(1:4). The ChCl-THY(1:4) works efficiently for removal of high (20 mg/L) and low (500 µg/L) concentration of Cr(VI) from artificially contaminated natural water with >95% extraction efficiency (E%) at optimized reaction conditions (pH 2-6, 40°C). The DES was characterized by H NMR and FTIR spectroscopy, and the data suggest that interaction occurs between Cl ion of choline chloride and H atoms of thymol molecules. Physicochemical properties such as density, melting point, moisture, and solubility were studied and discussed. Herein, no sharp melting point was observed for ChCl-THY(1:4) in DSC curve. DES was regenerated using 0.1 M NaOH as stripping agent, and 50%-60% extraction efficiency could be attained in the next cycle. A plausible mechanism of interaction between Cr(VI) species and DES was also explored with the help of FTIR spectroscopy. PRACTITIONER POINTS: A novel hydrophobic DES (ChCl-THY) is prepared by mixing choline chloride and thymol at 1:4 molar ratio. ChCl-THY(1:4) is employed for the first time as sole extracting agent to remove the Cr(VI) from contaminated aqueous solution. >95% extraction efficiency was achieved by ChCl-THY(1:4) in natural water conditions at µg/L and mg/L level of contamination. Both the component used to prepare the DES are naturally abundant; hence, DES is not toxic for biota. The element present in natural water did not show any interference with extraction of Cr(VI).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.1597 | DOI Listing |
Acta Histochem
September 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1‑1‑1 Minami‑Kogushi, Ube 755‑8505, Japan. Electronic address:
Cholinergic neurons in the basal forebrain cholinergic nuclei (BFCN) and neostriatum (CPu) play key roles in learning, attention, and motor control. The loss of cholinergic neurons causes major neurodegenerative diseases such as Alzheimer's disease. This study aimed to elucidate the molecular diversity of choline acetyltransferase immunoreactive (ChAT-ir) neurons in these brain regions.
View Article and Find Full Text PDFJ Gastroenterol
September 2025
Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China. Electronic address:
Ethnopharmacological Relevance: Chrysanthemum (Chrysanthemum morifolium Ramat.) is a widely used plant with both medicinal and dietary applications, boasting a history spanning thousands of years, exhibiting various pharmacological activities such as anti-inflammatory, antipyretic, antibacterial, and antiviral effects. According to the Compendium of Materia Medica, chrysanthemum is renowned for its ability to calm the liver and improve vision.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
The United Graduate School of Agricultural Science, Iwate University, Ueda-3, Morioka, Iwate, 020-8550, Japan.
Plasmalogens are a subclass of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position; they play several physiological roles including membrane stabilization, antioxidant activity, and signal transduction. While choline, ethanolamine, serine, and glycerol plasmalogens (PlsCho, PlsEtn, PlsSer, and PlsGro) are naturally abundant, inositol plasmalogens (PlsIns) are rare. In contrast to the limited occurrence of PlsIns, phosphatidylinositol is a biologically crucial lipid, and its enzymatic biosynthesis from phosphatidylcholine has been extensively studied.
View Article and Find Full Text PDF