98%
921
2 minutes
20
To investigate the diagnostic value of a computed tomography (CT) scan-based radiomics model for acute aortic dissection.For the dissection group, we retrospectively selected 50 patients clinically diagnosed with acute aortic dissection between October 2018 and November 2019, for whom non-contrast CT and CT angiography images were available. Fifty individuals with available non-contrast CT and CT angiography images for other causes were selected for inclusion in the non-dissection group. Based on the aortic dissection locations on the CT angiography images, we marked the corresponding regions-of-interest on the non-contrast CT images of both groups. We collected 1203 characteristic parameters from these regions by extracting radiomics features. Subsequently, we used a random number table to include 70 individuals in the training group and 30 in the validation group. Finally, we used the Lasso regression for dimension reduction and predictive model construction. The diagnostic performance of the model was evaluated by a receiver operating characteristic (ROC) curve.Fourteen characteristic parameters with non-zero coefficients were selected after dimension reduction. The accuracy, sensitivity, specificity, and area under the ROC curve of the prediction model for the training group were 94.3% (66/70), 91.2% (31/34), 97.2% (35/36), and 0.988 (95% confidence interval [CI]: 0.970-0.998), respectively. The respective values for the validation group were 90.0% (27/30), 94.1% (16/17), 84.6% (11/13), and 0.952 (95% CI: 0.883-0.986).Our non-contrast CT scan-based radiomics model accurately facilitated acute aortic dissection diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183783 | PMC |
http://dx.doi.org/10.1097/MD.0000000000026212 | DOI Listing |
Eur J Trauma Emerg Surg
September 2025
French Military Medical Service Academy - École du Val-de-Grâce, Paris, France.
Background: Delivering intensive care in conflict zones and other resource-limited settings presents unique clinical, logistical, and ethical challenges. These contexts, characterized by disrupted infrastructure, limited personnel, and prolonged field care, require adapted strategies to ensure critical care delivery under resource-limited settings.
Objective: This scoping review aims to identify and characterize medical innovations developed or implemented in recent conflicts that may be relevant and transposable to intensive care units operating in other resource-limited settings.
Clin Res Cardiol
September 2025
Department of (Interventional) Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-628, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
Background: Fractional flow reserve (FFR) for non-culprit lesions (NCLs) in patients with ST-elevation myocardial infarction (STEMI) can be influenced by temporary changes in microvascular resistance. Angiography-derived vessel fractional flow reserve (vFFR) has been tested as a less-invasive alternative.
Aims: The FAST STEMI II study aimed to assess the diagnostic performance of acute-setting vFFR vs.
ESC Heart Fail
September 2025
Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.
View Article and Find Full Text PDFJTCVS Open
August 2025
Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pa.
Objective: Valve selection in acute type A aortic dissection (ATAAD) requiring aortic root replacement is challenging given the clinical acuity, unknown patient preferences, risk of surgical bleeding, and limited life expectancy. We sought to identify long-term outcomes of mechanical versus bioprosthetic aortic root replacement in young patients with ATAAD.
Methods: Retrospective review of our institution's database of ATAAD was conducted to identify patients aged 65 years and younger who underwent mechanical Bentall (mech-Bentall) or bioprosthetic Bentall (bio-Bentall) for ATAAD from 2002 to 2022.
JTCVS Open
August 2025
Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minn.
Objective: To evaluate the early postoperative morbidity, mortality, and prosthetic conduit function of patients who underwent aortic root replacement using a prefabricated bioprosthetic aortic valved conduit.
Methods: Single-center retrospective review of 124 consecutive adult patients who underwent aortic root replacement with a certified prefabricated bioprosthetic aortic valved conduit from 2021 to December 2023.
Results: Indications for operation were aortic aneurysms (n = 92), endocarditis (n = 12), deterioration of prior valve prosthesis (n = 13), and aortic dissection (n = 6).